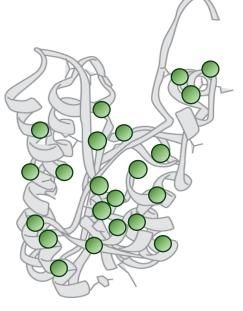

Engineered Enzymes to Overcome Scalability and Sustainability Challenges of Nucleic Acid Therapeutics Manufacturing

Codexis core business pillars


Based on CodeEvolver® platform to accelerate enzyme discovery and commercialization

Commercially Relevant Enzyme

ally

Value

Creating

Products

Biotherapeutics

enzymes as oral drugs; engineered transgenes and capsids for gene therapy

Pharmaceutical Manufacturing enzymes for small molecule production

Life Sciences

enzymes for NGS applications and DNA/RNA synthesis



CODEXIS®

ECO Synthesis™ Technology

(Enzyme-Catalyzed Oligonucleotide Synthesis)

RNAi: High Demand / Constrained Supply

Demand Drivers

Production & Supply Challenges

RNA delivering on promise of personalized medicines (10+ FDA approved therapies have reached market in past 5yrs)

RNAi therapeutics as a modality is growing rapidly with >450 assets in pipelines

RNAi therapies are treating the previously untreatable diseases

Chemical RNA synthesis produces **Millions** of liters of chemical waste... and growing!

Phosphoramidite synthesis will be challenged to meet demand of 1,000s kg of RNAi p.a. by 2030

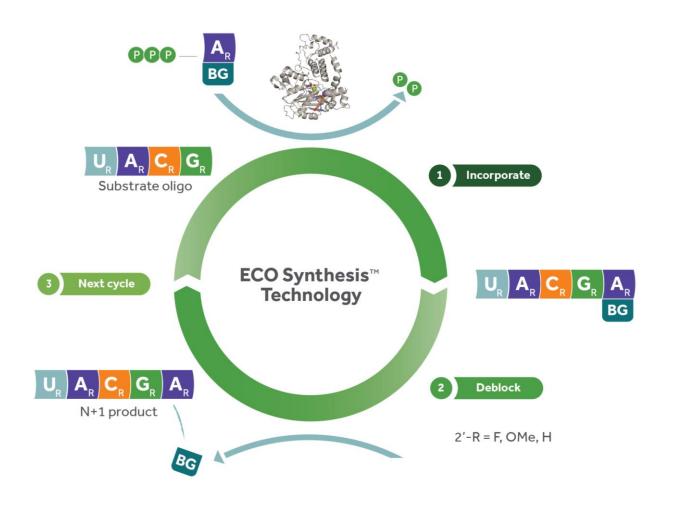
Critical solvent supply constraints likely (Acetonitrile)

Enzymes are poised to spur innovation and disrupt RNAi manufacturing

Scalability

Purity & Yield

Sustainability


Enzyme catalytic activity enables multiple cycle use

Evolution targets >99% incorporation efficiency

Aqueous waste streams & lower solvent use

Enzyme-Catalyzed Oligonucleotide Synthesis for RNAi therapeutics



ECO Synthesis™ Technology

- Controlled addition of modified RNA bases (TdT)
- Deblocking of 3'blocking group (phosphatase)
- Supply of 3'blocked NTP substrates (multiple enzymes)

Enzyme-Catalyzed Oligonucleotide Synthesis for RNAi therapeutics

Enzyme Performance

- High incorporation efficiency (>99%)
- No sequence bias

At-Scale Process Requirements


- Controlled addition of monomers
- Low impurity production
- High volumetric productivity

Scalable & Economical Enzyme Manufacturing

- High manufacturing yield:
- Scalable supply of nucleotide triphosphates

Enzyme-Catalyzed Oligonucleotide Synthesis for RNAi therapeutics

Enzyme Performance

- High incorporation efficiency
- No sequence bias

At-Scale Process Requirements

- Controlled addition of monomers
- Low impurity production
- High volumetric productivity


Scalable & Economical Enzyme Manufacturing

- High manufacturing yield:
- Scalable supply of nucleotide triphosphates

Final process in development

Enzyme-Catalyzed Oligonucleotide Synthesis for RNAi therapeutics

Enzyme Performance

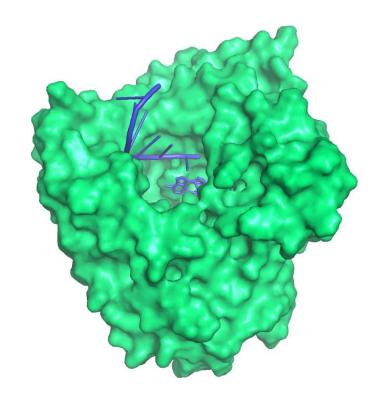
- High incorporation efficiency
- No sequence bias

At-Scale Process Requirements

- Controlled addition of monomers
- Low impurity production
- High volumetric productivity

Scalable & Economical Enzyme Manufacturing

- High manufacturing yields
- Scalable supply of nucleotide triphosphates



Final process in development

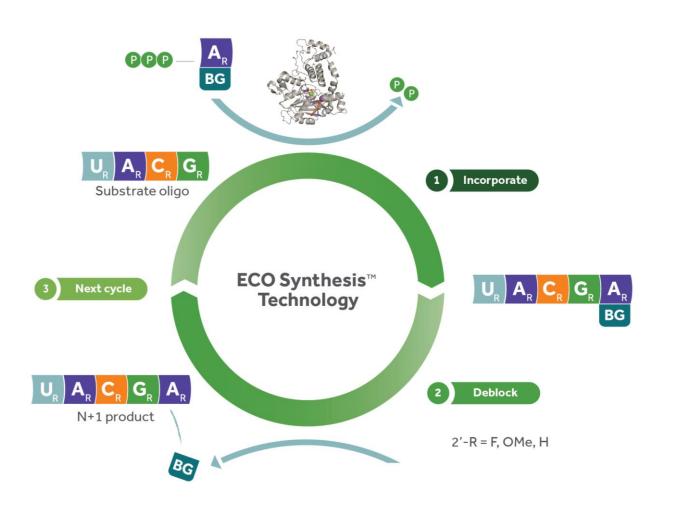
Enzyme Performance: A highly engineered TdT

Key Enzyme Challenges

- Does not naturally recognize modified RNA
- Poor soluble expression and stability
- Enzymes function close to physiological conditions
- Manufacturability for large scale enzyme needs

Enzyme Performance: A highly engineered TdT

% Incorporation efficiency of N+1 additions over multiple rounds of evolution


3'-Terminus		Starting Iterative Rounds of Evolution							
Sequence	NTP	TdT							
mAmCmU	fATP-3P	0	0	0	0	1	54	91	94
	fUTP-3P	0	0	0	0	1	56	93	94
	mCTP-3P	0	0	0	0	1	54	91	89
	mGTP-3P	0	0	0	0	1	24	87	78
	mATP-3P	0	0	0	0	1	39	88	66
	*mGTP-3P	0	0	0	0	0	0	2	55
	*mUTP-3P	0	0	0	0	0	0	19	24
mGmAmC	fUTP-3P	0	0	0	0	2	33	74	92
	mATP-3P	0	0	0	0	1	16	60	90
	fATP-3P	0	0	0	1	2	34	77	88
	mCTP-3P	0	0	0	0	0	13	66	86
	*mUTP-3P	0	0	0	0	0	0	11	79
	*mGTP-3P	0	0	0	0	0	0	3	64
	mGTP-3P	0	0	0	0	0	0	2	55
AT*mG	mATP-3P	4	1	4	49	75	82	47	56
AmU*mG		0	0	0	12	46	77	75	41
mAmU*mG		0	0	0	0	5	69	82	68
mAmUfG		0	0	0	0	0	2	1	66
mUmGmA	mATP-3P	0	0	0	1	2	38	82	86
mAfUCmC		0	0	0	0	4	58	88	86
mAmG(MOE)C		0	0	0	0	0	4	14	84
mC*mG*mA		0	0	0	0	2	39	75	75
mCmUmG		0	0	0	0	4	82	86	72
mAmUmC		0	0	0	0	2	57	84	63
mAmUfU		0	0	0	0	0	0	0	59
*mA*mA*mC		0	0	0	0	1	30	54	57
mAmUfC		0	0	0	0	0	1	1	51
mCmGmA	fATP-3P	0	0	0	1	4	82	93	92
*fAfGmA		4	2	4	19	50	79	85	85
mC*mG*mA		0	0	0	1	3	47	81	82
*fA*fAfG		0	0	0	0	0	44	56	70
fCfGfA		0	0	0	3	26	50	55	65
mU*fA*fA		0	0	0	0	3	11	17	34
fGmAfU		6	5	6	3	12	42	52	30
fC*fG*fA		0	0	0	0	4	14	30	14

So far...

- ✓ Incorporation of relevant 2'-modifications with 3' phosphate blocking group
 - ✓ 2'-deoxyfluoro and 2'-methoxy
- \checkmark Incorporation of α-PS bonds
- ✓ Recognition of modified initiator sequences
- ✓ Improving incorporation efficiency of each nucleotide (goal >99%)

Note: All incorporating nucleotides contain 3'-blocking group; "*" denotes alpha PS-bond; "m, r, f" denotes 2'-OMe, 2'-OH, or 2'-F modifications, respectively

ECO Synthesis™ Technology: Controlled addition of monomers

Target Sequence:

5' - Biotin/FAM...mA mU mA mA mG mA fA - 3'

- ✓ 4 Cycles for proof of concept
- Feasibility demonstrated for modified RNA synthesis

ECO Synthesis™ Technology: Controlled addition of monomers

Coming soon...enzymatically-activated monomer supply

Demonstrated...

 \checkmark

Nucleoside → NTP conversion → 3'Blocked-NTP

"Two-step-one-pot" synthesis of 3'-blocked nucleotides

Provides scalable, sustainable, economic supply of required ECO Synthesis™ monomers

ECO Synthesis™ Technology: A vision for sustainable RNA synthesis

Accomplished to date

- ✓ Progress on critical TdT performance
- ✓ Proof of Concept for iterative nucleotide addition
- ✓ Concept for enzymatically-derived source of 3'-blocked nucleotides

Next Steps

- Increase % monomer incorporation to reduce impurities
- Sustainable & scalable supply of nucleotides
- Scale-up to process-relevant conditions
- Achieve gram-scale synthesis of modified RNA

Nasdaq: **CDXS** www.codexis.com

