Using Machine Learning to Predict the Risk of Either Having an Aggressive Form of Prostate Cancer (PCa) or Lower Grade PCa/Benign Prostatic Hyperplasia (BPH) Based Upon the Flow Cytometry Immunophenotyping of Myeloid-derived Suppressor Cells (MDSCs) and Lymphocyte Cell Populations

George A. Dominguez<sup>1</sup>, John Roop<sup>1</sup>, Alexander Polo<sup>1</sup>, Anthony Campisi<sup>1</sup>, Dmitry I. Gabrilovich<sup>2</sup>, and Amit Kumar<sup>1</sup>

<sup>1</sup>Anixa Biosciences, Inc., San Jose, CA; <sup>2</sup>The Wistar Institute, Philadelphia, PA

# Flow Cytometry Based Immunophenotyping

#### Flow Cytometry

- ✓ 50+ years in use
- ✓ A foundation of immunology and tumor immunology research

#### <u>Immunophenotyping</u>

- ✓ Know what you are looking for
- ✓ Manual gating = Boolean logic
- ✓ Operator experience
- ✓ More parameters (N) = more 2D unique relationships (R)
  - $\sqrt{N} = 2; R = 1$
  - $\sqrt{N} = 3; R = 3$
  - $\sqrt{N} = 4$ ; R = 6
  - $\checkmark$  N = 5; R = 10
- ✓ Higher dimensions difficult for us to understand

- ✓ Real time analysis for thousands of cells per second
- ✓ Multiple cell markers can be used
- ✓ Cost Effective



# Myeloid-derived Suppressor Cells – What about them?

#### Indicative of Solid Tumors and Severity



#### 

#### Predictors of Immunotherapy Response?



### First Question

Can we use MDSCs and other leukocytes as a predictor for higher grade prostate cancer (PCa) and distinguish them from benign prostatic hyperplasia (BPH)/lower grade PCa?

# Myeloid and Lymphocyte Immunophenotyping



# Traditional Gating: Manual Counting - MDSCs



Simple cell counts can provide information about trends, but can only categorize some subjects

### **Next Question**

# Can we use machine learning (neural networks) to analyze the flow cytometry data to categorize patients?



# Neural Network – A Type of Al



Source: https://www.analyticsindiamag.com/how-to-create-your-first-artificial-neural-network-in-python/

# Complex Relationships – More Than Just Gating



# Complex Relationships – More Than Just Gating

Myeloid
Panel

Panel

**HDM** 

[Live Cells]

CD33. HLA-DR

CD14

CD16

CD15 D11b





<u>Lymphocyte</u> <u>Panel</u>









### **Data Transformation**



### Data Transformation – What is the Common Feature?

- Samples to be used by a neural network <u>must</u> have features in common across <u>all</u> samples
- For images, every sample has some specific pixel value for each pixel space
  - The pixels are the common features across all images
- But there is no common feature for the entire sample set in flow cytometry data
  - An immunofluorescence channel value on a specific event is a common feature across all cells, not between samples





# Hypervoxel Generation – The Inputs

2D: Pixel 3D: Voxel





# Hypervoxel Generation – The Inputs

#### Multidimensions (>3D): Hypervoxel



8 Markers + DAPI

4<sup>9</sup> = 262,144 Unique Hypervoxel Spaces

#### What is the input for the network?

- Each hypervoxel is a unique address
- Each event has channel values that give it an address to a hypervoxel
- The number of events that fall into that address is counted to be the input to the network
  - array of counts

#### **Dataset Generation**

- 100,000 events are collected per sample
- Create sibling samples variations of 50,000 events
- Per sample 20 sibling samples are created

# Neural Network – Binary Classifier



### Clinical Characteristics and Manual Counting

| Characteristic         | PCa     | BPH     |
|------------------------|---------|---------|
| Total                  | 145     | 115     |
| Median Age             | 68      | 63      |
| Age Range              | 42 – 86 | 40 – 81 |
| Gleason Score          |         |         |
| 6                      | 55      |         |
| 7 (3+4)                | 31      |         |
| 7 (4+3)                | 31      |         |
| >8                     | 28      |         |
| T-Stage (AJCC 8th Ed.) |         |         |
| T1c                    | 117     |         |
| T2a                    | 6       |         |
| T2c                    | 1       |         |
| Unknown                | 21      |         |



Still...simple cell counts can provide information about trends, but not really categorize subjects

### Clinical Application: Confirmatory Testing

|                  |                                       | Actual                           |                       |  |
|------------------|---------------------------------------|----------------------------------|-----------------------|--|
|                  |                                       | HR-PCa                           | BPH/LR-PCa            |  |
| Test             | HR-PCa                                | 46                               | 33                    |  |
|                  | BPH/LR-PCa                            | 3                                | 24                    |  |
| Sei              | ns. (%) (95%CI)                       | ) (95%CI) 93.88 (83.13 to 98.72) |                       |  |
| Spe              | Spec. (%) (95%CI) 42.11 (29.14 to 55. |                                  | 29.14 to 55.92)       |  |
| PPV (%) (95%CI)  |                                       | 58.23 (                          | 3.23 (52.48 to 63.76) |  |
| NPV (%) (95%CI)  |                                       | 88.89 (                          | 71.94 to 96.15)       |  |
| Acc. (%) (95%CI) |                                       | 66.04 (                          | 56.20 to 74.96)       |  |

Population: Men who were going to prostate biopsy

Samples used for training:

41 HR-PCa

113 BPH/LR-PCa

**Holdout Samples for Testing:** 

49 HR-PCa

57 BPH/LR-PCa

> Potentially reduce the number of unnecessary prostate biopsies?

### Conclusions

- We demonstrated that we can combine machine learning with flow cytometry data
  - Pros: Objective, Large Amounts of Data, More Data Inclusion, Simple Assay
  - <u>Cons:</u> Supervised Learning, Requires Large Amounts of Data for Training, Difficult to Determine Most Important Relationship – "Black Box" Idea
- We have applied this technique to be a binary classifier
  - distinguish between BPH/PCa in a small number of samples
- >This can used for other classifications and tumor types
  - Breast Cancer: Early Stage vs non-Tumor Bearing
  - Breast Cancer: Early Stage vs DCIS
  - Prostate Cancer: Advanced Stage vs non-Tumor Bearing

### **Future Work**

- ➤ Identify the critical relationships between cell populations that are used to make the classifications → hypervoxels
- ➤ Can this technique be applied to other flow cytometry data sets with different cancers or more cell populations? CyTOF? (retrospective analysis)
- As more and more data sets are generated with more and more information, can this help answer the question: What do we do with all of this data? What are we really trying to answer?
- Can this be used for answering other questions?
  - tumor recurrence, treatment and/or immunotherapy responses
    - Collaborative projects

### Thank You!

#### **Anixa Biosciences**

San Jose

Philadelphia

Amit Kumar, PhD Alexander Polo

John Roop

**Anthony Campisi** 

#### The Wistar Institute

Dmitry I. Gabrilovich, MD, PhD

Flow Cytometry Core Facility

Jeffrey Faust

#### **Clinical Collaborators**

New Jersey Urology, LLC

Adam Perzin, MD

Renee Haney, CCRC

Brianna Florentine, CRC

Jennifer Pilallis, CRC

MD Anderson Cancer Center at Cooper

Robert Somer, MD

Mary Schafer

# Questions?