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Flow Cytometry Based Immunophenotyping
Flow Cytometry
 50+ years in use
 A foundation of immunology and tumor 

immunology research
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 Real time analysis for thousands of cells per 
second

 Multiple cell markers can be used
 Cost Effective

Immunophenotyping
 Know what you are looking for
 Manual gating = Boolean logic
 Operator experience
 More parameters (N) = more 2D 

unique relationships (R)
 N = 2; R = 1
 N = 3; R = 3
 N = 4; R = 6
 N = 5; R = 10

Higher dimensions difficult for us to 
understand

Verschoor et al.  Frontiers in Immunology. 6:380 (2015).

N = 7; R = 21
Identified 7 populations

A lot of information is discarded during analysis…



Myeloid-derived Suppressor Cells – What about them?

3Zhang et al. PLoS ONE 8(2) 2013.

Colorectal

Angell et al. Thyroid 26(3) 2016.

Thyroid

Diaz-Montero et al. Canc Immunol Immunotherapy 58(1) 2009.

Breast Cancer

Chen et al. Oncology Letters 14 2017.

Lung

Indicative of Solid Tumors and Severity Predictors of Immunotherapy Response?

Chi et al. Int J Clin Exp Med 7(10) 2014.

Prostate Cancer

Prostate Cancer

Hossain et al. Clin Cancer Res 21(16) 2015.

Kitano et al. Cancer Immunol Res 2(8) 2014.

Meyer et al. Cancer Immunol Immunother 63:247-257 2014.

CTLA-4 Responses 
in Late Stage 
Melanoma



First Question

Can we use MDSCs and other leukocytes as a predictor 
for higher grade prostate cancer (PCa) and distinguish 

them from benign prostatic hyperplasia (BPH)/lower 
grade PCa?
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Myeloid and Lymphocyte Immunophenotyping
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Simple cell counts can provide information about trends, but can only categorize some subjects
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Benign Prostatic Hyperplasia (BPH) n = 48
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Can we use machine learning (neural networks) to analyze 
the flow cytometry data to categorize patients?
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Next Question

Category A
BPH/LR-PCa

Category B
HR-PCa

Test Sample

BPH/LR-PCa
or

HR-PCa
Training



Neural Network – A Type of AI

Source: https://www.analyticsindiamag.com/how-to-create-your-first-artificial-neural-network-in-python/

https://www.analyticsindiamag.com/how-to-create-your-first-artificial-neural-network-in-python/


Complex Relationships – More Than Just Gating
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Complex Relationships – More Than Just Gating



Data Transformation
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How do we effectively translate the flow 
cytometry data into a format for NN analysis?

Multidimensional Space



Data Transformation – What is the Common Feature?

12

• Samples to be used by a neural network must 
have features in common across all samples

• But there is no common feature for the entire 
sample set in flow cytometry data 
 An immunofluorescence channel value on a specific event 

is a common feature across all cells, not between samples

• For images, every sample has some specific 
pixel value for each pixel space
 The pixels are the common features across all images



Hypervoxel Generation – The Inputs
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3D: Voxel

Creates 42 = 16
“Pixels”

2D: Pixel



Hypervoxel Generation – The Inputs

8 Markers
+

DAPI

Dataset Generation
• 100,000 events are collected per sample
• Create sibling samples – variations of 50,000 

events
• Per sample – 20 sibling samples are created
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Multidimensions (>3D): Hypervoxel

49 = 262,144
Unique Hypervoxel Spaces

What is the input for the network?
• Each hypervoxel is a unique address

• Each event has channel values that give it an 
address to a hypervoxel

• The number of events that fall into that address is 
counted to be the input to the network

o array of counts



Neural Network – Binary Classifier
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BPH/LR-PCa HR-PCa

Training Dataset

Prevent 
Overfitting

Validation Dataset

BPH/LR-PCa HR-PCa

Testing Dataset

Holdout Dataset
Samples Never Seen by the Neural Network

500 Neural Networks 
Created

VOTE ?
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Clinical Characteristics and Manual Counting
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Characteristic PCa BPH
Total 145 115
Median Age 68 63
Age Range 42 – 86 40 – 81
Gleason Score

6 55
7 (3+4) 31
7 (4+3) 31

>8 28
T-Stage (AJCC 8th Ed.)

T1c 117
T2a 6
T2c 1

Unknown 21

Still…simple cell counts can provide information about 
trends, but not really categorize subjects
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Clinical Application: Confirmatory Testing

Actual

HR-PCa BPH/LR-PCa

Te
st HR-PCa 46 33

BPH/LR-PCa 3 24

Sens. (%) (95%CI) 93.88     (83.13 to 98.72)

Spec. (%) (95%CI) 42.11     (29.14 to 55.92)

PPV (%) (95%CI) 58.23     (52.48 to 63.76)

NPV (%) (95%CI) 88.89     (71.94 to 96.15)

Acc. (%) (95%CI) 66.04     (56.20 to 74.96)

 Potentially reduce the number of unnecessary prostate biopsies?

Samples used for training:
41 HR-PCa
113 BPH/LR-PCa

Holdout Samples for Testing:
49 HR-PCa
57 BPH/LR-PCa

Population: Men who were going to prostate
biopsy



Conclusions
We demonstrated that we can combine machine learning with flow 

cytometry data
• Pros: Objective, Large Amounts of Data, More Data Inclusion, Simple Assay
• Cons: Supervised Learning, Requires Large Amounts of Data for Training, Difficult to 

Determine Most Important Relationship – “Black Box” Idea
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We have applied this technique to be a binary classifier
• distinguish between BPH/PCa in a small number of samples

This can used for other classifications and tumor types
• Breast Cancer: Early Stage vs non-Tumor Bearing
• Breast Cancer: Early Stage vs DCIS
• Prostate Cancer: Advanced Stage vs non-Tumor Bearing



Future Work
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 Identify the critical relationships between cell populations that are 
used to make the classifications  hypervoxels

 Can this technique be applied to other flow cytometry data sets with 
different cancers or more cell populations?  CyTOF? (retrospective 
analysis)

 Can this be used for answering other questions?
• tumor recurrence, treatment and/or immunotherapy responses

 Collaborative projects

 As more and more data sets are generated with more and more 
information, can this help answer the question: What do we do with 
all of this data?  What are we really trying to answer?



Thank You!
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Questions?
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