The Synovial Sarcoma Subset Analysis of the Multi-Histology Phase I Trial of ADP-A2M4 (MAGE-A4)

Brian A. Van Tine¹, David S. Hong², Dejka M. Araujo², Melissa Johnson³, Jeffrey Clarke⁴, David Liebner⁵, Kunle Odunsi⁶, Anthony J. Olszanski⁷, Paula M. Fracasso⁸, Samik Basu⁸, Erica Elefant⁸, Dennis Williams⁸, Trupti Trivedi,⁸ Marcus Butler⁹

¹Washington University in St. Louis, ²MDACC, ³Sarah Cannon, ⁴Duke, ⁵OSU, ⁶Roswell Park, ⁷Fox Chase Cancer Center, ⁸Adaptimmune, ⁹Princess Margaret Cancer Centre
Disclosure Information: Brian A. Van Tine (Presenter)

Personal financial interests:

- Advisory Role/Consultant: Epizyme; CytRx; Janssen; Plexxcon
- Consultant, Advisory Role/Speaker, Research/Trial Support, Travel Support: Lilly
- Speaker Bureau: Caris
- Research Grant/Consulting/Ad Board: Pfizer
- Consultant: Bayer
- Research Grant: Merck; Tracon
- Advisory Board: Immune Design; Daiichi Sankyo
- Speaker: Adaptimmune

Institutional financial interests:

- Research Grant: Lilly; Merck
- Trial Support: Oncothyreon; Gliknik; Celidex Therapeutics; ImClone Systems; Peregrine Pharmaceuticals; BIND Therapeutics; Regeneron Pharmaceuticals; MabVax Therapeutics; Millenium; AbbVie; Janssen Research Foundation; Jounce Therapeutics; EMD Serono; Puma Biotechnology; VentiRx Pharmaceuticals; Taiho Pharmaceuticals; Gilead Sciences; Incyte; Daiichi Pharmaceutical; Novartis; Pfizer; Acerta; Inventiv Health; Celgene; Sanofi; AstraZeneca; Merrimack Pharmaceuticals; Biothera Pharmaceuticals; Medimmune; Blueprint Medicines; Bristol-Myers Squibb; Enzyme Lifesciences Corporation; Eisai; Genentech; Corvus; Johnson & Johnson; Threshold Pharmaceuticals; Bayer; BeiGene; GlaxoSmithKline; Molecular Insight Pharmaceuticals; Gem Pharmaceuticals; Deciphera Pharmaceuticals; Forma Therapeutics, Bavarian Nordic; Hoffmann-LaRoche; Caris Life Sciences; Morphotek; Soligenix; Eleison Pharmaceuticals; AADi; Immune Design; TRACON Pharmaceuticals; NanoCarrier; Advencchen Laboratories; Karyopharm Therapeutics; Hutchison MediPharma

This study (NCT03132922) is sponsored by Adaptimmune LLC
Background

ADP-A2M4 SPEAR (Specific Peptide Enhanced Affinity Receptor) T-cells

For most approaches, access to extracellular proteins only

- CAR-NK-cells
- Bispecific Ab
- ADC

For T-cells:

- Cancer cell
- T-cell

TCR-based recognition

- More options for targeting cancers by enhancing the natural immune system:
 - T-cells scan HLA-peptides with TCRs
 - Access to broader spectrum of extra- and intra-cellular proteins
- TCR is T-cell’s scan natural receptor construct
- Ability to target solid tumors, as opposed to normal tissues

MOA video:

https://youtu.be/zdI8IGXoQd0
Objectives

• Phase 1 Dose Escalation, Multi-Tumor Study to Assess the Safety, Tolerability and Antitumor Activity of ADP-A2M4 in HLA-A2⁺ Subjects with MAGE-A4⁺ Tumors (NCT03132922)
• This presentation focuses on data from patients with synovial sarcoma

Primary
• Evaluate safety and tolerability of ADP-A2M4 T-cell therapy

Secondary
• Evaluate the antitumor activity of ADP-A2M4 T-cells
• Evaluate potential therapy-related delayed AEs for 15 years post-infusion

Exploratory
• Evaluate the persistence, phenotype and functionality of transduced and non-transduced T-cells
• Characterize the tumor and serum factors that may influence response or resistance to ADP-A2M4 therapy
Methods: Study Design

- **HLA and MAGE-A4**
 - HLA screening followed by MAGE-A4 IHC Testing

- **Eligibility Assessment & Leukapheresis & Manufacturing of SPEAR T-cells**

- **Trial Assessments**
 - Safety Monitoring
 - Translational Studies
 - Efficacy Evaluation by RECIST

- **Long-term Follow Up**

- **Screening Study Enrollment**

- **Main Study Enrollment**
 - Baseline Tumor Measurements
 - Days -7 to -4
 - Days 1 to 3
 - Days 1-180 or until PD

- **SPEAR T-cell Infusion and Hospitalization**

Additional Information

- 11 patients treated with Flu 30 mg/m² x 4d, Cy 600 mg/m² x 3d
- 4 patients treated with high dose regimen of Flu 30 mg/m² x 4d, Cy 1800mg/m² x 2d
Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N=15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>9 (60.0)</td>
</tr>
<tr>
<td>Female</td>
<td>6 (40.0)</td>
</tr>
<tr>
<td>Median age (range), years</td>
<td>49 (31, 76)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>13 (86.7)</td>
</tr>
<tr>
<td>Asian</td>
<td>2 (13.3)</td>
</tr>
<tr>
<td>ECOG performance status, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9 (60.0)</td>
</tr>
<tr>
<td>1</td>
<td>6 (40.0)</td>
</tr>
<tr>
<td>Prior lines of systemic therapy, median (range)</td>
<td>2.5 (1, 6)</td>
</tr>
<tr>
<td>Most common prior systemic therapies, n (%)</td>
<td></td>
</tr>
<tr>
<td>Ifosfamide/ Anthracycline (concurrent)</td>
<td>9 (60.0)</td>
</tr>
<tr>
<td>Ifosfamide/ Anthracycline or Anthracycline/ Ifosfamide (sequential)</td>
<td>3 (20.0)</td>
</tr>
<tr>
<td>Ifosfamide only</td>
<td>3 (20.0)</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>7 (46.7)</td>
</tr>
<tr>
<td>MAGE-A4 expression % of tumor cells 2+/3+ by IHC, median (range)</td>
<td>94.3 (8.3, 100)</td>
</tr>
<tr>
<td>Cell dose x 10^9, median (range)</td>
<td>8.9 (3.41, 9.98)</td>
</tr>
</tbody>
</table>
Safety: Adverse Events Occurring in >25% of Patients

<table>
<thead>
<tr>
<th>Term</th>
<th>Any grade, n (%)</th>
<th>Grade ≥ 3, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukopenia</td>
<td>14 (93.3)</td>
<td>14 (93.3)</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>14 (93.3)</td>
<td>14 (93.3)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>13 (87.7)</td>
<td>12 (80.0)</td>
</tr>
<tr>
<td>CRS</td>
<td>12 (80.0)</td>
<td>2 (13.3)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>11 (73.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>10 (66.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Nausea</td>
<td>9 (60.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>9 (60.0)</td>
<td>6 (40.0)</td>
</tr>
<tr>
<td>Anemia</td>
<td>8 (53.3)</td>
<td>7 (46.7)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>8 (53.3)</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Sinus tachycardia/Tachycardia</td>
<td>7 (46.7)</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Hypophosphatemia</td>
<td>6 (40.0)</td>
<td>5 (33.3)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>6 (40.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>5 (33.3)</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>5 (33.3)</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>5 (33.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>5 (33.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>5 (33.3)</td>
<td>5 (33.3)</td>
</tr>
<tr>
<td>Hypotension</td>
<td>5 (33.3)</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Rash</td>
<td>5 (33.3)</td>
<td>3 (20.0)</td>
</tr>
<tr>
<td>ALT increased</td>
<td>5 (33.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Headache</td>
<td>4 (26.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Tumor pain</td>
<td>4 (26.7)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

Data cut off 23-Oct 2019
Adverse Event of Interest

Aplastic Anemia (AA)

- AA has been reported in other cell therapies using a high-dose lymphodepletion regimen\(^1\)
- Three cases of fatal aplastic anemia reported in trials with three different TCRs using a lymphodepletion regimen of Flu 30 mg/m\(^2\) x 4d, Cy 1800 mg/m\(^2\) x 2d
 - 76-year-old patient with synovial sarcoma treated with ADP-A2M4 (MAGE-A4)
 - 73-year-old patient with synovial sarcoma treated with NY-ESO-1 TCR\(^1\)
 - 66-year-old patient with NSCLC treated with ADP-A2M10 (MAGE-A10, NCT02989064)
 (AA cases reported at ESMO 2019\(^2\))
- All cases were reported to regulatory agencies
- RT-PCR did not detect MAGE antigens in the bone marrow

Patients who were affected received a higher lymphodepleting regimen and were elderly; protocols have been amended
- Lower lymphodepletion regimen: Flu 30 mg/m\(^2\) x 4d, Cy 600 mg/m\(^2\) x 3d
- Patients must be \leq 75 years old

\(^1\) Mackall et al, *J Clin Oncol* 2016
\(^2\) Van Tine et al, *ESMO* 2019
ADP-A2M4 SPEAR T-Cells Induce Clinical Responses

Best overall response in 14 patients with post-baseline assessments

*2 patients had single scans †Patient with aplastic anemia

Data cut off 23-Oct 2019
ADP-A2M4 SPEAR T-Cells Induce Clinical Responses

Best overall response in 14 patients with post-baseline assessments

Data cut off 23-Oct 2019

*2 patients had single scans †Patient with aplastic anemia
Significant Tumor Reduction

46% reduction by RECIST 1.1.

- 67-year-old male
- 4-yr history of disease
 - Treated with surgery and radiotherapy
 - Recurrence in the pericardium treated with debulking and ifosfamide
- High MAGE-A4 expression
- SLD* was 155 mm
- 9.95 x 10^9 SPEAR T-cells

Baseline

Week 12

(*)SLD = Sum of the Longest Diameter of the target lesions

Washington University Physicians • Barnes-Jewish Hospital
Significant Tumor Reduction

Lung

Pleura

86% decrease in RECIST 1.1 and significant symptom improvement

- 53-year-old male
- Longstanding history of synovial sarcoma
 - Treated with surgery, radiotherapy, and multiple chemotherapy regimens
- High MAGE-A4 expression in tumor
 - Baseline SLD* 24 cm
 - 9.87×10^9 SPEAR T-cells
- Baseline scans
 - Extensive disease in the lung and pleura-based tumor masses
- Post-infusion
 - Grade 1 CRS and cytopenias
- Week 6 scans
 - One large pleura-based lesion disappeared and others reduced via RECIST 1.1 criteria

(*SLD = Sum of the Longest Diameter of the target lesions)
Reduction in Bulky Tumor

Lung

44% decrease by RECIST 1.1 and shortness of breath resolved

- 42-year-old male
- Diagnosed age 25 years
- Recently developed metastatic disease
- Moderate MAGE-A4 expression
- Baseline SLD* 20 cm
- 9.95 x 10⁹ SPEAR T-cells
- Baseline symptoms and scans
- Shortness of breath due to accumulation of fluid in pleural space
- Tumor (left lung) displacing major blood vessels and compressing right lung
- Post-infusion
- Grade 2 CRS and cytopenias
- Week 12 scans
- Tumor decreased and non-target lesion disappeared
- Patient lung expanded and shortness of breath resolved

(*SLD = Sum of the Longest Diameter of the target lesions)
Transduced T-Cells Peak Expansion

Higher peak expansion associated with decrease in tumor size from baseline

Data cut off 23-Oct 2019
Conclusions

- ADP-A2M4 SPEAR T-cells induced clinical responses by RECIST 1.1 in 7/14 and disease control in 13/14 assessed patients with synovial sarcoma
 - Additional follow up needed to determine durability of responses

- Most adverse events consistent with those typically experienced by cancer patients undergoing cytotoxic chemotherapy and/or cancer immunotherapy
 - CRS was common in the treated patient population

- Higher peak expansion is associated with decreases in tumor size from baseline

- The ADP-A2M4 Phase 2 SPEARHEAD-1 Trial in synovial sarcoma and myxoid/round cell liposarcoma is now enrolling in North America, and soon in Europe (NCT04044768)
Acknowledgments

We thank the patients and their caregivers for taking part in this trial.

We thank the investigators and their teams who participated in this work.