

AN OUNCE OF PREPROCESSING IS WORTH A POUND OF COMPUTING


Tim Saxe, CTO, QuickLogic

BEFORE WE START

Pedometer, Spencer & Perkins, c. 1780

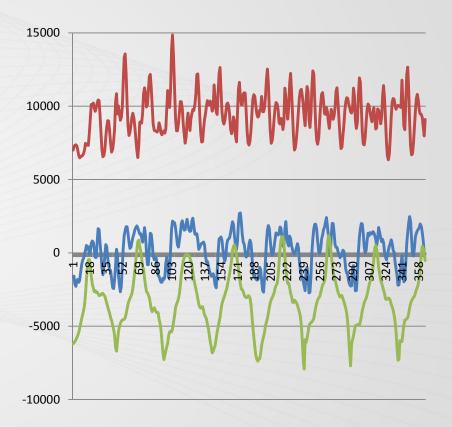
- A wearable device from 230 years ago
- Used energy harvesting!

"It's really quite simple all we want to know is are we getting enough exercise to stay healthy?"

THE OUTPUT IS QUITE SIMPLE

Two bits of data!

Your amount of exercise is:


- about right
- too little
- too much

- Typical pedometer records 3 axis of acceleration data 50 times a second
- That is 13 million data points that have to be reduced to approximately 10,000 steps and then ultimately 2 bits of information

THE INPUT IS NOT SO SIMPLE

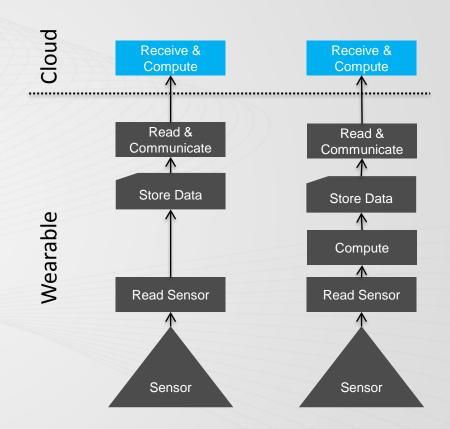
USE THE CLOUD

- 13 million data points is a trivial amount of data by today's standards
- The storage requirement is 26MB/day which easily fits into \$1 of flash memory
- So we can easily store the data and communicate it via BLE to a smart phone and then via LTE to the cloud
- What does this do to battery life?

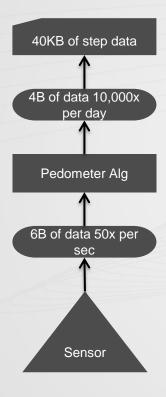
ENERGY TO COMMUNICATE 26MB

- CR2032 typical disposable battery
- Total capacity is "240mAh"
- Which translates into 2,500 Joules (SI unit of energy)
- BLE uses 2J to transmit 1MB of data
 - It takes 52J to transmit 26MB of data
 - About 2.1% of the energy in the battery – looking good!

ENERGIZER CR2032 Industry Standard Dimensions mm (inches) This Battery has Underwriters Laboratories component Recognition 3.20 (0.126) 20.00 (0.787) 2.90 (0.114) 19.70 (0.776) 17.70 (0.697) Maximum (+) 0.20 (0.008) Maximum Ref. Permissible deflection from a flat.


ENERGY TO STORE 26MB

- To store and retrieve data from a flash memory requires 6.3J/MB → 3xBLE
 - It takes 164J to store then retrieve
 26MB
 - About 6.6% of the energy in the battery
- BLE alone might get 40 days
- BLE + storage more like 11 days
- Obviously would like to avoid storing all that raw data



PREPROCESSING

- Most people take less than 10,000 steps a day
- Let's look at the energy implications of computing steps and saving them, instead of the raw data

STEPS ARE A LOT CHEAPER THAN RAW DATA

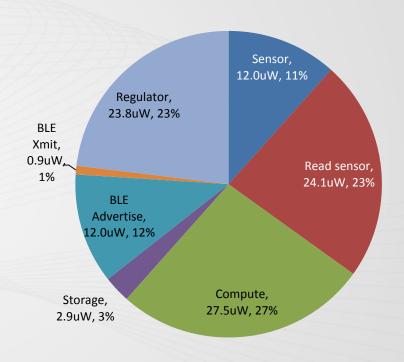
- Pedometer algorithm reduces 26MB of accelerometer data to 40KB of step data – a 500 fold reduction
- Storing and retrieving 40kB of data uses 0.3J
- Communicating 40KB of data over BLE takes 0.1J
 - And takes 4 seconds vs. 40 minutes
- Of course this is only helpful if the pedometer algorithm uses less energy than is saved

- Storing and sending 26MB
 - 164J for storing
 - 52J for sending → 216J total
- Storing and sending 40KB
 - 0.3J for storing
 - 0.1J for sending → 0.4J total
- Net savings: 215J/day
 - This is 10% of the battery capacity
 - This is equivalent to 2.5mW

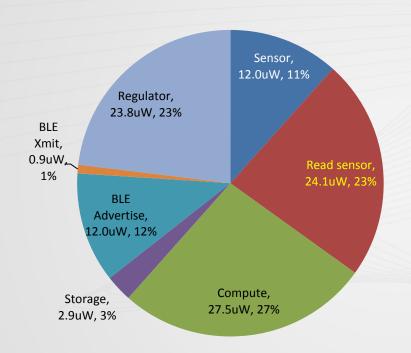
As long as the pedometer algorithm uses less than 2.5mW, it takes less energy to compute first and then transmit

- Pedometer uses about 5,500 clocks per time sample
 - → 275,000 clocks/second
- M4F + memory uses about 100uW/MHz
 - → 27.5uW to compute pedometer vs.
 - 2,500uW to store and transmit

Computing locally is 100x more energy efficient that storing and transmitting raw data



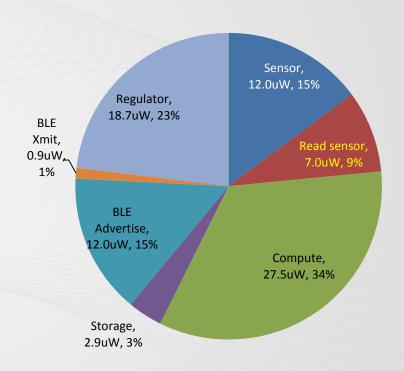
SYSTEM POWER


Overall device power: 103uW(avg)

Sensor	12.0uW	12%
Read sensor	24.1uW	23%
Compute	27.5uW	27%
Storage	2.9uW	3%
BLE Advertise	12.0uW	12%
BLE Xmit	0.9uW	1%
Regulator	23.8uW	23%

- 8.9J/day which is a lot less than the 52J to transmit the raw data
- Resulting in 280 days from a CR2032 battery
- But we can do better...

QuickLogic



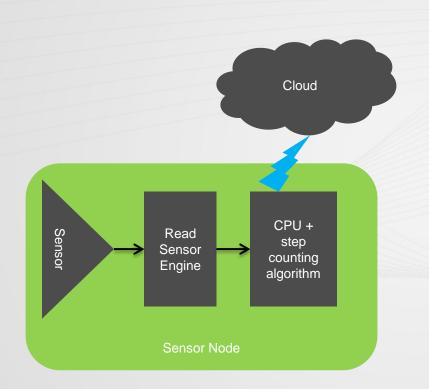
- Reading the sensor uses 23% of the power
- This is because we use a relatively 'big' M4 to do a simple I/O task
- Much more power efficient to separate the 'read sensor' function off into its own tiny preprocessor
- A small state-machine can read the sensors using only 7uW

QuickLogic

- Now Read Sensor is 9% of the total
- Total power is 81uW or 7J/day
- And battery life is 357 days

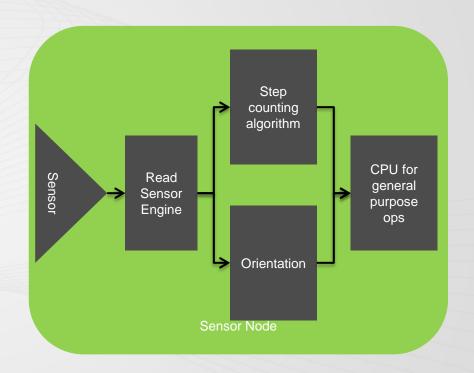
Now what would a 1 year battery life do for user experience?



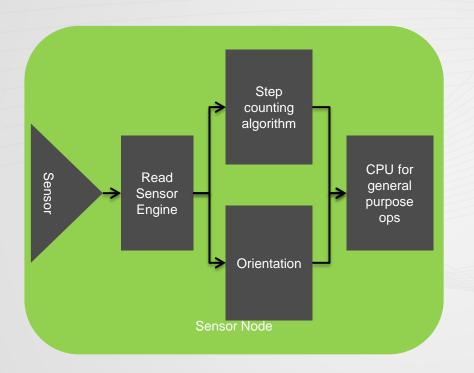


- Store and forward raw sensor data requires 261J/day of energy, resulting in less that 10 day battery life
- Using the wearable to preprocess accelerometer data into steps reduced daily energy to 9J/day
- Adding a state-machine to pre process the serial datastream from the sensor into a parallel form for a MCU further reduced the energy consumption to 7J/day

Going deeper...

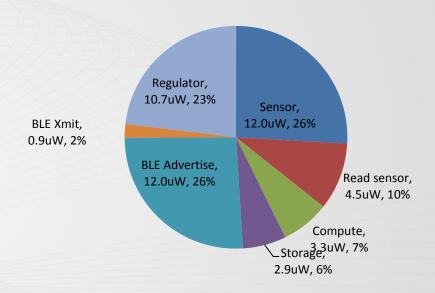



GENERALIZING THE CONCEPT


- We have shown how moving calculation before communication can save energy
- We also showed that using a specialized CPU to manage reading the sensors can further save power
- The latter example works because dedicated hardware is lower power than generalized hardware – but it also requires specialized design

- CPU designers have been doing this for a long time:
 - UART
 - SPI controller
 - USB controller
 - Ethernet controller
- What will be the equivalent functions in the wearable space?
 - Step counting?
 - FFT
 - Rotations

- Our studies show that custom blocks can operate at ½ the energy per clock cycle and implement basic algorithms in ¼ the clock cycles
- For example, the M4 in our EOS product uses 100uW/MHz and the step count algorithm takes 5,500 clock cycles
- The Flexible Fusion Engine in our EOS product uses 50uW/MHz and takes only 1,300 clock cycles




SYSTEM POWER USING FFE

Overall device power: 43uW(avg)

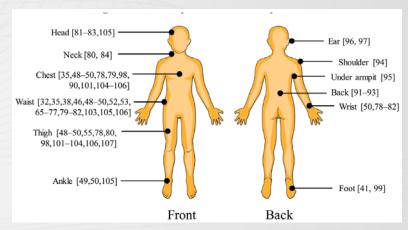
	FFE	M4
Sensor	12.0uW	12.0uW
Read sensor	4.5uW	24.1uW
Compute	3.3uW	27.5uW
Storage	2.9uW	2.9uW
BLE Advertise	12.0uW	12.0uW
BLE Xmit	0.9uW	0.9uW
Regulator	10.7uW	23.8uW
	46.3uW	103.2uW

- 4J/day which is significantly improved
- Theoretically this results in 600 days of battery life from a CR2032
- In practice, leakage currents become nonnegligible and noticeably reduce battery life

I hope this convinces you that adding small amounts of specialized preprocessing can dramatically improve battery life

Some thoughts on where this might lead...

GOING FORWARD: LET'S RETHINK WEARABLE


"It's really quite simple – all we want to know is are we getting enough exercise to stay healthy?"

Notice the user never asked for a band, or watch – they asked for information

A COLLECTION OF SENSORS

- The wrist is not a good place for a pedometer – especially for people who talk with their hands
- If sensor nodes preprocess then they won't overwhelm the communication bandwidth, and with long battery life they become low maintenance
- Imagine sensor nodes in shoes, in belt buckles, in pendants, in gloves, in smart watches

Source: mdpi.com

BODY AREA SENSOR FUSION

- If we use preprocessing at the sensor node, shoes + buckle + smart watch sensors will compress 100MB of accelerometer data into 160KB of step count data
- The cloud can fuse the data to provide a significantly more accurate and low-touch user experience:
 - Getting strong watch motion but weak buckle motion probably waving arms
 - Buckle and shoes dead still, but watch showing steps: changed into gym clothes and gone walking/running
 - Buckle and watch showing walking and shoes dead still changed into a different pair of shoes, use buckle data

- For the past 4 decades process development has all been about bigger, better, faster
 - We love our multi Gigahertz smart phones
 - We rely on multi Gigahertz servers
 - But power has taken a backseat to performance
- Recently companies have started paying attention to power
 - But when your baseline is a 60W chip, 1W sounds like low power
 - We are seeing a second generation of low power processes, and more attention placed on design techniques such as subthreshold logic

GOING FORWARD: PRINTED CIRCUITS

- Perhaps the most exciting trend is towards printed ICs
 - Printing allows small volume production
 - Printing allows mass customization
 - Printing allows cost reductions
- Printed transistors are not as fast as conventional transistors
 - You cannot crank the clock up to get more compute power
 - With this technology, low clock cycle count becomes critical and hardware preprocessors can deliver

GOING FORWARD: SENSORS

- The people who build sensors are really good at improving them:
 - Cost declines with time
 - Size declines with time
 - Power declines with time big improvements every generation
- The people who develop new sensors are also incredibly creative:
 - Gas sensors are typically heated oxide structures
 - Making them smaller saves power
 - But then there is the company that uses the gases to produce power! The higher the concentration, the higher the power (its still too little to be useful, but hey)

Thanks