Background

SY-5609 is a novel, non-autonomous, highly selective dose and PK CDK7 inhibitor.

- Demonstrates robust anti-tumor activity in well-characterized in vitro and preclinical models with strong dose-response relationships in the PBMC, THP-1, 293FT and MDA-MB-231 cell lines.
- Demonstrates robust anti-tumor activity in combination with a well-characterized in vitro and preclinical model with strong dose-response relationships in the PBMC, THP-1, 293FT and MDA-MB-231 cell lines.
- Safety and tolerability, including cycle-1 dose-limiting toxicities (DLTs) were evaluated.
- Patients were eligible with a diagnosis of advanced breast, colorectal, lung, ovarian or pancreatic cancer or with advanced cancer of any histology with evidence of deregulated RB cell cycle control.

Methods

- Patients were eligible with a diagnosis of advanced breast, colorectal, lung, ovarian, or pancreatic cancer.
- Safety and tolerability, including cycle-1 dose-limiting toxicities (DLTs) were evaluated.
- Dose-limiting toxicities were graded using the National Cancer Institute Common Toxicity Criteria for Adverse Events (NCI-CTCAE) version 5.0.
- PBMCs and PDXs were obtained on days 1 and 15 in cycle 1.
- PBMC-RNA expression within treated patient PBMCs were measured relative to a set of control genes identified as unresponsive to SY-5609 in preclinical models. PBMC-RNA fold-change was defined by patient normalization to the geometric mean across controls.
- Tumor responses were assessed per RECIST 1.1.
- Data presented from August 21, 2020 snapshot.

Response Summary

- 6 of 17 patients were response evaluable.
- Single Agent Cohort:
 - 2 patients at 3 mg daily achieved stable disease as the best response.
 - 1 patient at 4 mg daily achieved stable disease as the best response.
 - 1 patient at 5 mg daily achieved stable disease as the best response.
- Combination Cohort:
 - 2 patients, each at 1 mg and 3 mg daily demonstrated progressive disease.
 - 1 patient with cancer with concurrent on-target drug therapy, combination therapy (dose and regimen).

Dose-related Increases Observed in SY-5609 Plasma Exposures and PBMC POLR2A Responses

- SY-5609 Plasma PK – Day 1
- PBMC POLR2A – Day 1

Increased SY-5609 Plasma Exposures and PBMC POLR2A PD Responses Achieved at Steady State with Once Daily Dosing

- PK and PD data were available at the 3 mg continuous daily dose level to support an analysis of POLR2A PD at steady state on Day 15.
- POLR2A PD responses at Day 15 were enhanced relative to Day 1, consistent with increased SY-5609 exposure at steady state.

SY-5609 Dosed at 3 mg Daily Induces POLR2A Elevations Associated with Regional and Necrosis in Patients with endometrial cancer

- POLR2A responses in PBMs of SY-5609-101 patients treated at 3 mg achieved a 2.3 fold-change from baseline that is consistent with POLR2A being a cancer driver in tumors that respond to SY-5609.
- ~70% CD75 occupancy in PBMs from patients treated with the control CDK7 inhibitor SY-1385 (Study SY-5609-101).

Conclusions

- POLR2A is a pharmacodynamic PD gene expression marker for SY-5609 and is enriched in tumors with CDK7 and CDK19 occupancy.
- SY-5609 exhibits a dose-dependent effect on POLR2A gene expression and is associated with tumor regressions in preclinical models and in vivo.

Administrative of an Intermitting Dosing Regimen Maintained Tumor Regressions in Ovarian Cancer Xenografts

- SY-5609, a highly selective and potent oral inhibitor of CDK7, showed dosedependent effects on PK/PD in preclinical models at once daily dosing.
- Dose-dense regimens have been shown to demonstrate proof of mechanism in patients with advanced solid tumors.
- POLR2A PD responses at 3 mg QD reached levels associated with tumor regressions in preclinical models and in vivo.
- As a single agent and in combination with fulvestrant, SY-5609 exhibited approximately dose proportional PK and moderate-high interpatient variability, minimal accumulation with repeat dosing, and a once daily-12 h half-life compatible with once daily dosing.
- The emerging safety profile demonstrates that the most common AEs are nausea, diarrhea, fatigue, platelet count decrease and vomiting.
- MTD has not been defined for the continuous daily dosing schedule.
- Expansion cohorts in breast and lung cancer patients have opened using the 3 mg dose to further assess PK, PD, and early clinical activity in more numerous human cancer patient populations.
- Alternative clinical dosing regimens being explored are supported by preclinical models where tumor regressions were maintained with intermittent dosing.