P370 Presented at the 2022 ESGCT Annual Congress Edinburgh, UK October 11-14, 2022 # Characterization of DSG3-CAART cells prior to & following adoptive transfer in mucosal Pemphigus Vulgaris Cabaletta Bio® S Basu¹, J Volkov¹, D Nunez¹, M Fouch¹, J Stadanlick¹, G Binder¹, D Chang¹, Kimberly Hoffman¹, S Manfredo-Vieira², D Porter², M Abedi³, W K Weng⁴, R Micheletti², E Maverakis³, M P Marinkovich⁴, M C Milone^{1,2}, A S Payne^{1,2} ¹Cabaletta Bio, Philadelphia, PA; ²Univ. of Pennsylvania School of Medicine, Philadelphia, PA; ³Stanford University School of Medicine, Stanford, CA; ⁴Univ. of California - Davis, Sacramento, CA #### **Background** Mucosal-dominant pemphigus vulgaris (mPV) is a painful blistering mucosal disease mediated by anti-desmoglein 3 autoantibodies (anti-DSG3 Ab). The current standard of care for mPV includes broadly immunosuppressive therapies (corticosteroids, MMF, & rituximab) that are not curative, require chronic administration & have risks of serious or life-threatening infection. Ideally, therapy would selectively eliminate pathogenic memory B cells that are DSG3 specific while sparing non-autoreactive immune cells. As chimeric antigen receptor engineered T cells (CAR-T) have demonstrated long lasting remission of B cell-mediated cancers, we developed engineered chimeric autoantibody receptor T cells (CAART) to assess if remission of B cell mediated autoimmune disease is possible. Currently, gene-modified autologous DSG3 specific CAART cells (DSG3-CAART) are being evaluated in patients with mPV in an open label dose escalation Phase I study (NCT 04422912). Here, we report on the phenotypic & functional characteristics of the DSG3-CAART cell infusion product and provide key correlative and clinical data from mPV patients treated with DSG3-CAART. #### Methods Flow cytometric analyses were performed on the infusion product & on post-infusion PBMC samples to assess transduction efficiency & memory phenotype. DSG3-CAART cell cytotoxicity assays were performed *in vitro* using the IncuCyte® platform. Engineered T-cell persistence was assessed by qPCR for the vector in post-infusion PBMC samples. Serum cytokines were measured via a multiplexed MSD immunoassay. Finally, anti-DSG3 Ab levels were evaluated on pre- and post- infusion serum samples via ELISA (MBL International). Pemphigus Disease Area Index (PDAI) scores were determined by investigator (physician) assessment. ## **DSG3-CAART** Design ## **Overview of Dose Escalation** | Cohort | Total DSG3-CAART Cell Dose | Fold
Increase
in Dose | Subjects per
Cohort | | | |------------------|--|-----------------------------|--|--|--| | A1 | 2x10 ⁷ | 1x | 3 | | | | A2 | 1x10 ⁸ | 5x | 3 | | | | A3 | 5x10 ⁸ | 25x | 3
[+1 A1-1
re-treated at the
A3 dose] | | | | A4 | 2.5x10 ⁹ | 125x | 3 | | | | A5 | 5-7.5x10 ⁹ | 250 to
375x | 4 ^a | | | | P4 ^b | 2.5x10 ⁹
+ cyclophosphamide & IVIg | 125x | 3 | | | | A6m ^b | 1-1.5x10 ¹⁰ | 500 to 750x | 3 | | | - ^a A 4th subject was dosed in Cohort A5 to generate additional data - ^b Future cohorts P4 and A6m will be enrolled concurrently with prioritization of enrollment in cohort P4 # **Patient demographics** | | Cohort A1
2x10 ⁷
(n=3) | Cohort A2
1x10 ⁸
(n=3) | Cohort A3
5x10 ⁸
(n=3) | Cohort A4
2.5x10 ⁹
(n=3) | Cohort A5
5-7.5x10 ⁹
(n=4) ^a | Overall
(n=16) | |--|---|---|---|---|--|-------------------| | Age, years,
median (range) | 39
(32-57) | 53
(50-54) | 60
(47-70) | 60
(56-70) | 48
(34-57) | 54
(32-70) | | Female (%) | 67% | 67% | 67% | 67% | 0% | 50% | | Disease Duration,
years,
median (range) | 3.4
(0.5-4.3) | 4.3
(3.9-13.0) | 0.7
(0.3-15.0) | 3.5
(0.1-12.4) | 1.6
(0.2-5.3) | 3.4
(0.1-15.0) | | Anti-DSG3 Ab Level,
U/mL,
median (range) | 92
(51-104) | 147
(86-168) | 147
(63-169) | 147
(114-162) | 144
(124-169) | 144
(51-169) | | Pemphigus Disease
Area Index,
median (range) | 17
(5-20) | 6
(6-14) | 12
(2-18) | 3
(1-4) | 5
(4-18) | 6
(1-20) | | Prior use of corticosteroids (%) | 3
(100%) | 3
(100%) | 3
(100%) | 3
(100%) | 3
(100%) | 15
(94%) | | Prior use of mycophenolate (%) | 2
(67%) | 3
(100%) | 1
(33%) | 2
(67%) | 2
(50%) | 10
(63%) | | Prior use of rituximab (%) | 3
(100%) | 3
(100%) | 0
(0%) | 2
(67%) | 1
(33%) | 9
(56%) | ^a A 4th subject was dosed in Cohort A5 to generate additional data #### Results **Figure 1. Infusion Product Characterization.** (A) Transduction efficiency of the manufactured product (MP) measured by flow cytometry and defined as the percentage of subjects' T cells in the MP that are DSG3-CAAR⁺. (B) Flow cytometry of DSG3-CAAR⁺ T cells expressing CD4 and CD8 from the MP. Data represented as the ratio of the percentage expressing CD4⁺ to CD8⁺. (C) Flow cytometry of DSG3-CAAR⁺ T cells expressing CCR7 and CD45RA from subjects' MP. Data represented as the percentage of DSG3-CAART⁺ T cells that are T_{EM} (CD45RA⁻ CCR7⁻), T_{EMRA} (CD45RA⁺CCR7⁻), T_{CM} (CD45RA⁻ CCR7⁺), and T_{SCM} (CD45RA⁺CCR7⁺). (D) Representative antigen-specific lysis of GFP⁺ anti-DSG3 surface immunoglobulin-expressing NALM6 target cells by DSG3-CAAR⁺ effector cells from patients' MP. Cell lysis curves show the number of GFP⁺ target cells present (±SD) at effector to target ratios ranging from 0:1 to 5:1 over 120 hours. **Figure 2. DSG3-CAART post-infusion persistence kinetics.** DSG3-CAART cells persist in subjects following infusion without lymphodepletion. Post-infusion DSG3-CAART cell persistence was measured by qPCR as copies of CAART transgene/μg of genomic DNA, extracted from peripheral blood mononuclear cells in 16 subjects from the first 5 dosing cohorts of CAB-101. X-axis corresponds to days elapsed since last infusion. Upper left panel, 3 subjects enrolled in cohort A1. Upper middle panel, 3 subjects enrolled in cohort A2. Upper right panel, 3 subjects enrolled in cohort A3. Patient A1-1 from cohort A1 was re-treated with 5 x 10⁸ DSG3-CAAR T cells and is included with the cohort A3 patients. Lower left panel, 3 subjects enrolled in cohort A4. Lower right panel, 4 subjects enrolled in cohort A5. **Figure 3. Post-infusion persistence is dose dependent up to the A4 dose.** Persistence increases in a dose dependent manner following DSG3-CAART infusion and levels off at doses > 2.5×10^9 DSG3-CAART cells. Scatterplot depicting subjects' post-infusion persistence area under the curve for the first 29 days (AUC_{29d}) vs. dose administered of DSG3-CAART cells across 16 subjects from the first five dosing cohorts of CAB-101. Inset, AUC_{29d} for subject A2-2. The coefficient of determination of a linear regression using dose as the independent variable is 0.61. Figure 4. Phenotype of DSG3-CAART cells following infusion. Cohort A4 and A5 DSG3-CAART+ cells compromise 0 to 5% of all peripheral blood T cells following infusion and are mostly T_{SCM} or T_{CM} following infusion. (A) Enumeration of subject A4-1's DSG3-CAART+ cells from the manufactured product (MP) or PBMCs from selected timepoints following infusion. (B) Flow cytometry of DSG3-CAART+ T cells from subject A4-1 expressing CCR7 and CD45RA from the MP or PBMCs from selected timepoints following infusion. (C) Line graphs from all A4 subjects depicting percentage of T cells that are DSG3-CAART+ (left panel); the percentage of DSG3-CAART+ cells that are T_{CM} (middle panel); and the percentage of DSG3-CAART+ cells that T_{SCM} (right panel) following infusion. Note: T_{EM} and T_{EMRA} DSG3-CAART+ cells were less reliably detected by flow cytometry due to low frequency of events. **Figure 5. Post-infusion serum IFNγ levels.** Serum IFNγ is transiently elevated following infusion in subjects at higher dose cohorts (A4 and A5). Screening and post-infusion serum samples were analyzed for cytokines via MSD multiplex immunoassay. X-axis corresponds to days elapsed since last infusion. Dashed line depicts lower limit of quantification (LLOQ) of assay. *Subject A3-1 was diagnosed with SARS-CoV2 infection shortly after DSG3-CAART cell infusion via PCR assay. Figure 6. Anti-DSG3 auto-Ab levels following DSG3-CAART cell infusion in initial low dose escalation cohorts [A1 to A4]. Screening, Pre-infusion (PreInf), & post-infusion anti-DSG3 auto-Ab levels were determined by ELISA as U/mL from serum isolated from 12 subjects of the first 4 dosing cohorts of CAB-101. X-axis refers to timepoints pre- & post-infusion. (A) Line graphs depicting absolute values of anti-DSG3 auto-Ab levels over time. Dashed line depicts antibody control for assay. (B) Line graphs depicting relative anti-DSG3 auto-Ab levels over time normalized to the PreInf timepoint. Dashed lines represent changes from the PreInf timepoint > ± 20% which are considered significant in this assay. *Subject A1-2 was treated with rituximab within 12 months of infusion (rituximab excluded within 12 months of screening unless disease worsening). | Cohort
(Dose) | Subject | Prior RTX
or IVIg* | Meds stopped or tapered prior to inf. | Screen | Pre-
Inf | Month
1 | Month 2 | Month
3 | Month
4 | n Month
5 | Month
6 | |------------------|--------------|-----------------------|---------------------------------------|--------|-------------|------------|----------------|------------|------------|--------------|------------| | A1 | A1-1 | RTX 10m | PRD | 20 | 10 | 13 | 33 PR | RD 70 IN | /lg 27 | 26 N | MF 30 | | A1 | A1-2 | RTX 6.5m
IVIg 3m | | 5 | 2 | 1 | 1 | 1 | 0 | 1 | 0 | | A1 | A1-3 | RTX 9m | MMF | 17 | 4 | 3 | 1 | 2 | 6 | 2 | 13 | | A2 | A2-1 | IVIg 4m | | 6 | 5 | 2 | 1 | 2 | 3 | PRD 2 | 5 | | A2 | A2-2 | | | 14 | 3 | 3 | 0 | 1 | 4 | PRD 4 | 11 | | A2 | A2-3 | IVIg 4m | | 6 | 1 | 3 PR | RD 4 | 7 | 4 | RTX 1 | 5 | | А3 | A3-1 | | | 2 | 2 | 0 | 0 P | RD 0 | 0 | 0 F | RD 24 | | А3 | A3-2 | | PRD, MMF | 12 | 10 | 10 | 22 | 20 | 20 | 10 | 21 | | А3 | A3-3 | | | 18 | 14 | 8 | 14 | 17 | 16 | PRD 6 | 7 | | A4 | A4-1 | | PRD, MMF | 3 | 5 | 3 | 6 _ľ | vlg 4 | 2 | 12 | 7 | | A4 | A4-2 | | | 1 | 1 F | PRD 1 | 1 | 0 | 0 | PRD 8 | 0 | | A4 | A4-3 | | | 4 | 5 | 4 | 5 | 4 PI | RD 5 | 4 | 8 | | # Subje | ects with PD | Al=0 or 1 (Cl | ear/Almost Clear) | 1 | 2 | 3 | 6 | 4 | 3 | 3 | 2 | Table 1. Disease Activity (PDAI Mucosal Score) following DSG3-CAART infusion. Pemphigus Disease Area Index (PDAI) Mucosal score was clinically assessed for each subject at the multiple timepoints: screening, pre-infusion, and post-infusion. RTX=rituximab; IVIg=intravenous immunoglobulin; MMF=mycophenolate; PRD=prednisone. *RTX or IVIg within12 months prior to infusion. RTX permitted within 12 months prior to screening if disease worsening; IVIg permitted >2 weeks prior to screening. Systemic PV therapy changes were more permissive after month 3; new PV therapy or PRD dose increases shown in red and PRD taper starts shown in green at the time the therapy change occurred. ## Conclusions - A 100% manufacturing success rate has been achieved to date across the 16 subjects treated in cohorts A1 to A5 in CAB-101 - The infusion product has a median CD4:CD8 ratio of 2.8 (range 0.57-7.77) & median transduction percentage of 50.75% (range 39.2% 70.0%) - The infusion product is largely composed of memory cells (T_{CM}, T_{SCM}, & T_{EMRA}) and has strong cytolytic capacity *in vitro* - DSG3-CAART cells persist in subjects with known anti-DSG3 autoimmunity up to and including 29 days in the absence of lymphodepletion – no immune mediated rejection observed to date - There is a dose dependent increase in persistence and persistence AUC_{29d} across 16 subjects (in the absence of lymphodepletion) that levels off at doses ≥ 2.5 x 10⁹ DSG3-CAART cells; persisting cells are predominately T_{SCM} and T_{CM} - At higher dose cohorts (A4 and A5), persistence approached that which is observed - in hematologic CAR-T trials (>1000 copies / ug DNA) Elevations in serum cytokines are observed following DSG3-CAART infusion - To date, in cohorts A1 to A4, there is no clear pattern of changes in anti-DSG3 auto-antibody levels or clinical disease activity scores - Patient A4-2 had a decrease in anti-DSG3 Ab titers at month 2 & 3** Initial results warrant further exploration of DSG3-CAART either through combination regimens or multi-dosing strategies. naded area indicates levels of persistence typically observed in adult patients who have B-cell derived hematologic malignancies treated with CD19 CART cells combined with lymphodepletion (at a median dose of tisagenlecleucel of 3 presented in detail at 31st Applyal FADV conference