




**Figure 1.** Combined forest plot of Ewoldt et al and Mangalore et al data on 28-day all-cause mortality. Abbreviation: RR, relative risk; TDM, therapeutic drug monitoring.

breakpoints or epidemiologic cutoffs. Despite the current interest and ongoing research, we now have results from two large randomized controlled trials in critically ill patients, powered for clinical outcomes that do not demonstrate benefit of TDM for patients [3, 5]. Therefore, at present we do not believe there is sufficient evidence to recommend widespread adoption of TDM in critically ill patients prescribed  $\beta$ -lactams.

## Notes

**Author Contributions.** T. Z. wrote the manuscript. B. D. did the meta-analysis and helped with revisions.

**Potential conflicts of interest.** No reported conflicts of interest. Both authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

Teagan Zeggil and Bruce Dalton

Pharmacy Services - Foothills Medical Centre, Calgary, Alberta, Canada

## References

- Pai Mangalore R, Ashok A, Lee SJ, et al. Beta-lactam antibiotic therapeutic drug monitoring in critically ill patients: a systematic review and meta-analysis. *Clin Infect Dis* 2022; 75:1848–60.
- Ewoldt TMJ, Abdulla A, Rietdijk WJR, et al. Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: a multicentre randomised clinical trial. *Intensive Care Med* 2022; 48:1760–71.
- Dilworth TJ, Schulz LT, Micek ST, Kollef MH, Rose WE.  $\beta$ -lactam therapeutic drug monitoring in critically ill patients: weighing the challenges and opportunities to assess clinical value. *Crit Care Explor* 2022; 4:e0726.
- Roberts JA, Paul SK, Akova M, et al. DALI: defining antibiotic levels in intensive care unit patients: are

current  $\beta$ -lactam antibiotic doses sufficient for critically ill patients? *Clin Infect Dis* 2014; 58:1072–83.

- Hagel S, Bach F, Brenner T, et al. Effect of therapeutic drug monitoring-based dose optimization of piperacillin/tazobactam on sepsis-related organ dysfunction in patients with sepsis: a randomized controlled trial. *Intensive Care Med* 2022; 48:311–21.

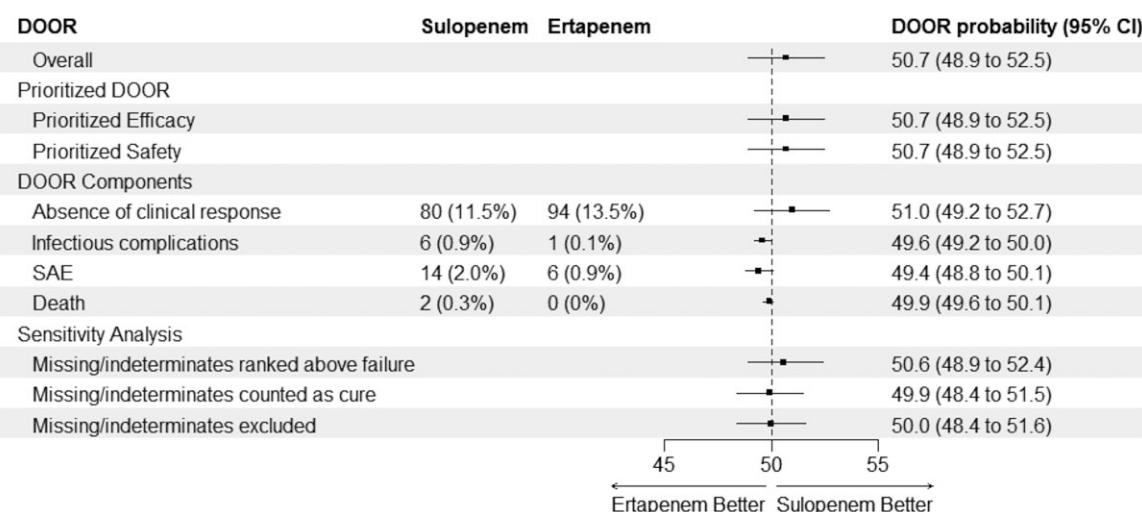
Correspondence: T. Zeggil, Foothills Medical Centre, 1403 29th St NW, Calgary, AB T2N 2T9, Canada (teagan.zeggil@albertahealthservices.ca).

**Clinical Infectious Diseases®** 2023;76(12):2212–3

© The Author(s) 2023. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

<https://doi.org/10.1093/cid/ciad150>

## Applying Desirability of Outcome Ranking End Point to Randomized Trial of Sulopenem for the Treatment of Complicated Urinary Tract Infections


TO THE EDITOR—We read Howard-Anderson et al's article [1] describing the application of a desirability of outcome ranking (DOOR) end point to 3 complicated urinary tract infection (cUTI) trials and Rodriguez-Baño and Gutiérrez-Gutiérrez's companion editorial [2] with great interest. We conducted a phase 3 cUTI trial to compare intravenous (IV) ertapenem (stepped down to either oral ciprofloxacin or amoxicillin-clavulanate) to IV sulopenem (stepped down to oral sulopenem etazadroxil + probenecid) [3]. Using the US Food and Drug Administration's (FDA's) current definition of a successful

response, that is, one that requires both clinical cure and microbiologic eradication, sulopenem's overall success rate was 67.8% while ertapenem's was 73.9% (treatment difference  $-6.1\%$ , 95% confidence interval [CI],  $-12.0$  to  $-1.1$ ). The conclusion, based on overall success, is that sulopenem is not noninferior to ertapenem in the treatment of cUTI. Notably, however, clinical success rates at test of cure that were determined using a patient-reported symptom assessment questionnaire were high in both treatment groups (89.4% for sulopenem, 88.4% for ertapenem). The difference in overall success rates was due to the lower incidence of asymptomatic bacteriuria (ASB) among patients who received ertapenem and stepped down to ciprofloxacin. Thus, the clinical relevance of a conclusion of noninferiority depends on whether or not ASB nearly 2 weeks after completion of therapy increases the risk of near-term treatment failure. In our study, the presence of ASB post-treatment was not a marker of subsequent clinical failure. Because ASB does not affect the way a patient feels, functions, or survives, Howard-Anderson et al did not include it as part of the primary end point in their analyses [1]. We performed a desirability-of-outcome ranking using their ranks (1 through 5) and definitions (Table 1).

The DOOR probability that a patient in the sulopenem arm would have a more desirable outcome than a patient

**Table 1. Desirability of Outcome Rankings by Treatment Arm**

|           | Ranks              |            |          |          |                     | Total No. of Participants |
|-----------|--------------------|------------|----------|----------|---------------------|---------------------------|
|           | 1 (most desirable) | 2          | 3        | 4        | 5 (Least Desirable) |                           |
| Sulopenem | 608 (87.5%)        | 77 (11.1%) | 4 (0.6%) | 4 (0.6%) | 2 (0.3%)            | 695                       |
| Ertapenem | 599 (85.9%)        | 95 (13.6%) | 3 (0.4%) | 0 (0%)   | 0 (0%)              | 697                       |



**Figure 1.** Forest plot demonstrating the desirability of outcome ranking (DOOR) probabilities for the DOOR, DOOR prioritized for efficacy and safety, and the DOOR components. Abbreviation: CI, confidence interval.

in the ertapenem arm is 50.7% (95% CI, 48.9% to 52.5%; Figure 1), indicating that sulopenem provided efficacy that was comparable to that of ertapenem in patients with cUTI [4]. The probabilities for the analyses prioritizing efficacy and safety were identical to the original outcome ranking, and those for the individual components were very similar.

The inclusion of ASB in the primary end point for studies of UTIs (both complicated and uncomplicated) should be reconsidered. Indeed, at the FDA's June 2022 public workshop on UTIs [5], numerous speakers expressed a desire that clinical trial end points focus more on symptomatic improvement rather than microbiological eradication, particularly since a lack of the latter, in the form of ASB, can drive inappropriate antibiotic use, selecting for resistant pathogens among post-treatment flora [6]. This approach would align with what is standard practice for many practicing physicians:

not performing follow-up urine cultures on those patients with UTIs whose symptoms resolve while on antibiotics.

#### Notes

**Financial support.** K. A., M. Z., and M. D. received support for writing this article while full-time employees of Iterum Therapeutics. S. P. and S. I. A. received support and are currently full-time employees of Iterum Therapeutics. A. F. D. received consulting fees from Iterum in support of this article.

**Potential conflicts of interest.** S. I. A. reports stock options and travel expense support for meetings and conferences from Iterum Therapeutics and a role as a board member of the Connecticut Infectious Disease Society. J. B. reports consulting fees on a contract basis for this and other studies from Iterum Therapeutics. A. F. D. reports consulting fees from ContraFect, UTILITY, MicuRx, and Paratek and participation on Paratek's Data Safety Monitoring Board. M. D. reports consulting fees, pending patents, and a role on the Iterum Therapeutics Board of Directors. S. P. reports consulting fees and stocks from Iterum Therapeutics. All other authors report no potential conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Michael W. Dunne,<sup>1,a,✉</sup> Steven I. Aronin,<sup>1</sup> Anita F. Das,<sup>2</sup> Jayanti Gupta,<sup>1</sup> Karthik Akinapelli,<sup>3,b</sup> Jeanne Breen,<sup>1</sup> Michael T. Zelasky,<sup>4,b</sup> and Sailaja Puttagunta<sup>1</sup>

<sup>1</sup>Iterum Therapeutics, Old Saybrook, Connecticut, USA; <sup>2</sup>Das

Statistical Consulting, Guerneville, California, USA; <sup>3</sup>Takeda Pharmaceuticals, Cambridge, Massachusetts, USA; and

<sup>4</sup>Johnson & Johnson, Cambridge, Massachusetts, USA

#### References

- Howard-Anderson J, Hamasaki T, Dai W, et al. Improving traditional registrational trial end points: development and application of a desirability of outcome ranking end point for complicated urinary tract infection clinical trials. *Clin Infect Dis* 2023; 76:e1157–65.
- Rodríguez-Baño J, Gutiérrez-Gutiérrez B. Opening a DOOR for pivotal studies: an example for complicated urinary tract infections. *Clin Infect Dis* 2023; 76:e1166–7.
- Dunne MW, Aronin SI, Das AF, et al. Sulopenem for the treatment of complicated urinary tract infections including pyelonephritis: a phase 3, randomized trial. *Clin Infect Dis* 2023; 76:78–88.
- Halperin M, Hamdy MI, Thall PF. Distribution-free confidence intervals for a parameter of Wilcoxon-Mann-Whitney type for ordered categories and progressive censoring. *Biometrics* 1989; 45:509–21.

5. FDA Workshop. Development considerations of antimicrobial drugs for the treatment of uncomplicated urinary tract infections (UTI). June 3, 2022.
6. Nicolle LE, Gupta K, Bradley SF, et al. Clinical practice guideline for the management of asymptomatic bacteriuria: 2019 update by the Infectious Diseases Society of America. *Clin Infect Dis* 2019; 68:1611–15.

<sup>a</sup>Present affiliation: Bill and Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA.

<sup>b</sup>Previously an employee of Iterum Therapeutics.

Correspondence: M. W. Dunne, Bill and Melinda Gates Medical Research Institute, One Kendall Square, Cambridge, MA 02115 ([Michael.w.dunne@comcast.net](mailto:Michael.w.dunne@comcast.net)).

**Clinical Infectious Diseases®** 2023;76(12):2214–5

© The Author(s) 2023. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact [journals.permissions@oup.com](mailto:journals.permissions@oup.com)  
<https://doi.org/10.1093/cid/ciad149>