Sandrine Perrimond-Dauchy¹, Carole Thang¹, Julie Dubourg¹, Sebastien Bolze¹ and Pascale Fouqueray¹ Poxel, 259-261 avenue Jean Jaurès, 69007 Lyon, France

INTRODUCTION

- AMPK plays a key role in cellular energy homeostasis and potential target for the treatment of fatty liver diseases and
- PXL770 is a first-in-class direct adenosine monophosphate-activated protein kinase (AMPK) activator.
- In pharmacological experiments, PXL770 was shown to improve metabolic syndrome and NASH in a number of dedicated animal models.
- In vitro studies showed that PXL770 is an inhibitor of one efflux transporter (BCRP) and two uptake transporters (OATP1B1 and OATP1B3)

OBJECTIVES

- To assess the safety, tolerability and pharmacokinetics (PK) of PXL770 following single ascending doses (SAD) and multiple ascending doses (MAD) in healthy Caucasian male subjects
- To determine the exposure-response (E-R) relationship between plasma concentrations of PXL770 and changes from baseline in QTcF
- To assess the drug-drug interaction (DDI) of PXL770 with rosuvastatin, a probe substrate of BCRP, OATP1B1 and OATP1B3 transporters

METHODS

- Two randomized, double-blinded, placebo-controlled studies of SAD (study 1) and MAD including an open-label part to assess the DDI with rosuvastatin (study 2)
 - SAD : 30, 60 mg (6 active, 2 placebo), 125, 250, 375 and 500 mg (9 active, 3 placebo)
 - MAD: 60, 125, 250, 375 and 500 mg qd and 125 mg bid (6 active, 2 placebo) - one single dose (Day 1) and repeated treatment for 10 days (Day 5 to Day 14)
 - **DDI** : Single dose of rosuvastatin (10 mg) before and after a treatment of PXL770 (250 mg qd) for 7 days (12 subjects)
- Safety: Adverse events (AE), vital signs, physical exams, safety laboratory, 12-lead electrocardiogram (ECG), 3-lead telemetry and 12lead Holter recording
- E-R modeling: Holter extracted ECGs were used to predict baseline and placebo adjusted QTcF ($\Delta\Delta$ QTcF) and its 90% Confidence Interval (90%CI) at the mean PXL770 maximum concentration (C_{max}) for each dose level
- PXL770 and Rosuvastatin concentrations: Validated LS-MS/MS methods
- PK parameters : non-compartimental analysis (Phoenix WinNonlin[®])

PXL770, a direct AMPK activator for the treatment of NASH, shows a favorable PK, tolerability and safety profile in humans

d	appears	as	а
	ASH.		

RESULTS

Demographics and baseline characteristics

	SAD	MAD	DDI
V *	64	48	12
Age (years)	36.8	36.8	41
Mean (SD)	(10.4)	(9.1)	(9.3)
3MI (kg/m²)	24.7	24.3	24.1
Mean (SD)	(2.5)	(2.6)	(2.3)

Safety and tolerability

In SAD and MAD (DDI) studies:

- Safety profile of PXL770 was good across the dose ranges tested
- No Serious Adverse Event (SAE) nor AE leading to discontinuation
- No clinically significant findings in 12-lead ECG, Holter ECG or telemetry, in vital signs and in safety laboratory
- The maximal tolerated dose was not reached

	Treatment Emergent Adverse Events (TEA SAD								MAD						DDI	
Dose (mg)	Pbo	30	60	125	250	375	500	Pbo	60 od	125 od	250 od	125 bid	375 od	500 od	250 od	250 od + Rosuva statin 10
Ν	16	6	6	9	9	9	9	12	6	6	6	6	6	6	12	12
TEAE	6 (19%)	2 (33%)	0	2 (22%)	4 (44%)	2 (22%)	1 (11%)	7 (50%)	3 (33%)	2 (17%)	7 (83%)	7 (83%)	11 (67%)	11 (67%)	1 (8%)	3 (17%)
SAE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TEAE with drawal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Related TEAE	3 (6%)	0	0	0	1 (11%)	0	0	2 (17%)	2 (33%)	0	4 (50%)	2 (33%)	5 (50%)	8 (50%)	0	0

- SAD : one related TEAE (mild dizziness) at 250 mg
- MAD : Most of related TEAEs were from the gastrointestinal system (abdominal pain or discomfort) or central nervous system (headache)

Exposure-Response modeling (QT/QTc)

- Over the whole range of doses investigated in the SAD and MAD, the upper bounds of the 90%CI of estimated ΔΔQTcF were never above the 10 msec threshold of regulatory concern
- It can be concluded that PXL770 is unlikely to induce QT/QTc prolongation over the entire tested dose ranges

Figure 1: Estimated ΔΔQTcF (with 90% CI) vs **PXL770** concentrations after single dose

Figure 2: Estimated $\Delta \Delta QTcF$ (with 90% CI) vs PXL770 concentrations after repeated doses

Pharmacokinetics

- Rapid absorption and distribution
- T_{max} around 1.5-3 h
- Bi-phasic elimination with a first rapid phase and a second much slower phase.
- Terminal half-life around 25 h
- Suspected entero-hepatic recirculation
- Almost no urinary excretion

administration

- process
- Steady state reached after 5 to 8 days
- Time-invariant PK

- rosuvastatin

CONCLUSIONS

- administrations
- PXL770 does not induce any QT/QTc interval prolongation up to 500 mg • PK is linear and dose-dependent up to 375 mg
- No Drug-Drug Interaction between PX770 and Rosuvastatin

Figure 5: Mean plasma concentration versus time profiles of PXL770 after multiple oral administrations

• C_{max} and Area Under the Curve (AUC) increased in a dose dependent manner following oral single administration with moderate inter-individual variability

• After multiple administrations, the increase in plasma exposure was also dose-dependent up to the dose of 375 mg and less than dose-proportional at the dose of 500 mg, suggesting a potential saturation in the absorption

• No accumulation on the C_{max} and a modest accumulation on the AUC

Figure 6: Mean plasma concentration versus time profiles of rosuvastatin with or without PXL770

• PXL770 is safe and well tolerated up to 500 mg after single and multiple