

Long-term treatment with imeglimin as add-on to oral antidiabetes therapy in Japanese patients with type 2 diabetes (TIMES 2) (Phase 3) K.Kaku¹, J. Dubourg², C. Thang², T. Kaneko³, P. Fouqueray²

BACKGROUND

Imeglimin is the first in a new tetrahydrotriazine-containing class of oral antidiabetic agents referred to as "glimins". Imeglimin ameliorates the two key defects in type 2 diabetes mellitus (T2DM), improving both:

- insulin secretion in response to glucose
- insulin sensitivity, through a unique mechanism of action targeting mitochondria.

AIMS

To assess the long-term safety and efficacy of imeglimin for 52 weeks as add-on to other individual oral antidiabetic therapies in Japanese patients with T2DM.

MATERIAL AND METHODS

This was an open-label, multicenter, Phase 3 study.

Japanese patients treated with one of the following therapies for more than 12 weeks received imeglimin 1000 mg orally twice daily as add-on therapy for 52 weeks:

- Alpha glucosidase inhibitor (AGI)
- Biguanide (BIG)
- Dipeptidyl peptidase-4 inhibitor (DDP4-I)
- Glinide (GLIN)
- Sodium glucose cotransporter 2 inhibitor (SGLT2-I)
- Sulphonylurea (SU)
- Thiazolidinedione (TZD)

Inclusion criteria:

- \checkmark Age \geq 20 years
- \checkmark BMI \geq 18.5 kg/m²
- \checkmark eGFR (MDRD) \geq 60 mL/min/1.73m²
- ✓ HbA1c ≥ 7.5% and < 10.5%

ENDPOINTS

Primary endpoint: safety and tolerability Secondary endpoints at 52 weeks:

- HbA1c
- FPG

1: Department of Internal Medicine, Kawasaki Medical School, Okayama, Japan, 2: POXEL S.A., Lyon, France, 3: POXEL KK, Tokyo, Japan

BASELINE CHARACTERISTICS

	AGI	BIG	DDP4-I	GLIN	SGLT2-I	SU	TZD
N of patients	64	64	63	64	63	127	65
Age (years)	56.6	57.6	63.6	58.1	57.1	60.3	57.1
Mean (SD)	(12.01)	(10.83)	(8.95)	(10.81)	(10.04)	(10.38)	(10.72)
Males	48	46	39	43	45	101	54
N - %	75.0%	71.9%	61.9%	67.2%	71.4%	79.5%	83.1%
BMI (kg/m2)	26.4	26.3	24.6	25.3	26.5	25.6	27.2
Mean (SD)	(4.6)	(3.7)	(3.4)	(4.6)	(4.4)	(4.2)	(4.4)
T2DM duration	7.5	9.0	8.0	7.9	9.6	10.6	9.3
Mean (SD)	(6.8)	(6.3)	(5.6)	(4.9)	(5.7)	(6.6)	(6.6)
FPG (mg/dL)	174	175	180	180	166	185	171
Mean (SD)	(31)	(31)	(33)	(34)	(28)	(38)	(32)
HbA1c (%)	8.37	8.16	8.23	8.48	8.50	8.63	8.72
Mean (SD)	(0.77)	(0.61)	(0.75)	(0.84)	(0.75)	(0.90)	(0.94)

Imeglimin, in combination with oral antidiabetic drugs in Japanese patients with type 2 diabetes was well tolerated and led to clinically meaningful and sustained improvements in glycemic control.

SAFETY AND TOLERABILITY										
	AGI	BIG	DDP4-I	GLIN	SGLT2-I	SU	TZD			
N of patients	64	64	63	64	63	127	65			
Any TEAEs	33	48	50	54	48	102	50			
N (%)	51.6%	75.0%	79.4%	84.4%	76.2%	80.3%	76.9%			
Mild	32	45	50	53	47	100	48			
Moderate	4	4	8	5	4	15	12			
Severe	1	4	1	0	1	5	1			
Drug related	6	24	14	10	7	27	6			
TEAEs, N (%)	9.4%	37.5%	22.2%	15.6%	11.1%	21.3%	9.2%			
Serious TEAEs	4	4	3	1	4	11	4			
N (%)	6.3%	6.3%	4.8%	1.6%	6.3%	8.7%	6.2%			
Serious drug related TEAEs	0	0	0	0	0	0	0			
Severe Hypoglycemia	0	0	0	0	0	0	0			
TEAE leading to	2	7	5	1	1	9	4			
discontinuation	3.1%	10.9%	7.9%	1.6%	1.6%	7.1%	6.2%			

CONCLUSIONS

EASD 2020 PS 52 Novel glucose-lowering agents in type 2 diabetes - A-20-1755-EASD