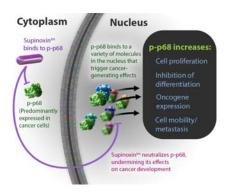
Single Agent Supinoxin Targeting Phosphorylated p-68 Preliminary Phase 1 Data

W. Larry Gluck¹, S. Gail Eckhardt², Martin Gutierrez³, Christine Peterson⁴ and Ely Benaim⁴, ¹Translational Oncology Research, Greenville, SC, ²University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 3John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 4Rexahn Pharmaceuticals, Inc., Rockville, MD

Abstract # 344

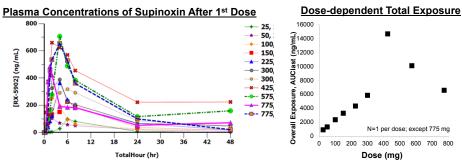

Background: Supinoxin (RX-5902) is a novel compound that targets phosphorylated p88 RNA helicase (also known ps. DXS), a member of the DEAD box family of RNA helicases. Phosphorylated p88 may play a vital role in one profited part of the part of

Methods: This is a Phase 1 study designed to evaluate safety, tolerability and pharmacokinetics following increasing doses of Supinoxin. Primary objectives include safety/ tolerability and to determine the MTD and a

increasing doses of Supinoxin. Primary objectives include safety folerability and to determine the MTD and a recommended phase 2 doselected (RP2D), secondary objectives were pharmacointesit (RP) and antitumor activity (RPCIST v1.1). Patients received from 25 to 425 mg Supinoxin for up to 6 doing cycles, with each cycle consisting of 1 dose of Supinoxa prevaled for 5 weeks followed by 1 week of rest. Pleasan concentrations were calculated using WinNorlin, Version 6.4. Results: Supinoxing injection of the properties of the properties of the properties of the properties were calculated using WinNorlin, Version 6.4. Results: Supinoxing inject only to fisted subjects as API in capsules, sometimes displayed an apparent, short lag time (0.25 hr), usually followed by a steep, rising plasma phase. However, T_{min} was somewhat variable, being observed from 1.5 to 6 th affect dosing, After T_{min} a wholf distribution phase was often observed, followed by the apparent terminal passa. Using the properties of value of 14.0 hr. C_{max} and AUC_{last} increased fairly linearly with dose. AUC_{last} increased in a dose-proportional manner overall, but C_{max} increased a less than proportional manner. Over the dose range of 25 to 425 mg, C_{max} in fasted subjects ranged from 99 to 660 ng/mL. Over the same dose range, AUC isst in fasted subjects ranged from 894 to 14,673 hr*ng/mL. The most frequent related adverse events noted to date were mild nausea, vomiting and fatigue: no grade 2 related events have been reported.

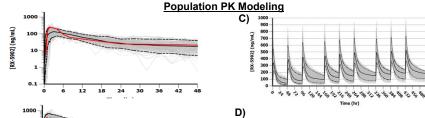
Conclusions: At the tested dose levels, Suponixin appears to be well tolerated.

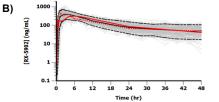
RX-5902 Proposed Mechanism

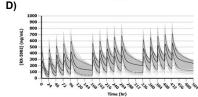

Study Design

This is a Phase 1 multicenter, dose finding, open-label, single agent study of RX-5902 administered orally to subjects with advanced or metastatic solid tumors. One subject will be treated per dose group until the appearance of a related grade 2 or greater adverse event, after which 3 subjects will be treated using the modified Fibonacci schedule.

Subjects will be treated for up to 6 cycles of therapy. RX-5902 will be taken on Days 1, 8, and 15 followed by a week of rest on Day 22 of a 28day cycle. All subjects will be followed for at least 30 days after the last dose of RX-5902. Additional cycles allowed for subjects receiving benefit

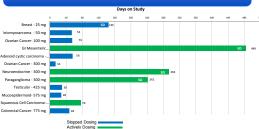

Pharmacokinetic sampling was done at 0.5 hours \pm 5 minutes, 1 hour \pm 10 minutes, 2 hours \pm 10 minutes, 3 hours \pm 10 minutes, 4 hours \pm 10 minutes, 6 hours \pm 10 minutes and 8 hours \pm 10 minutes, 24 hours \pm 10 minutes and 48 hours \pm 10 minutes, after the oral administration of RX-5902 on Cycle 1 Day 1


Preliminary Pharmacokinetic Results


Pharmacokinetic Summary

Dose	Site	Subject #	Cmax	Tmax	T1/2	AUClast
(mg)	#		(ng/mL)	(hr)	(hr)	(hr*ng/mL)
25	1	1	99.1	6	5.75	894
50	1	2	109	1.5	13.2	1308
100	2	1	252	2	27.6	2341
150	2	4	226	6	11.4	3280
225	1	4	364	4	12.0	4312
300	1	5	318	6	14.6	6141
425	2	6	660	2		14673
575	2	7	707	4		10098
775	1	7	571	2.75		6569

A)



For the population PK compartmental modeling, the concentration data was analyzed using Phoenix NLME and WinNonlin. Plasma concentrations were modeled with a 3 compartment oral administration models (panels A and B). The actual pharmacokinetic data were initially used to validate the simulation model (panels A and B), and 3/week at 250 mg/day (C) or 5/week at 200 mg/day (D) simulation were generated to predict exposures at each anticipated dose (3 week dosing regimen)

Predicted Plasma Exposures

		Total cycle					
Dosing	Dose	dose	Cmax	AUC	AUC	Cmax	AUC
Frequency	(mg)	(mg)	Day 1	Day 1	Week 1	Week 3	Week 3
1X week	425	1275	612	7087	15844	679	23897
I week	1050	3150	1507	17626	40076	1672	60015
	250	2250	356	4179	23986	534	41354
3X week	300	2700	432	5020	28607	644	49280
	350	3150	508	5861	33228	755	57207
5 Days on	100	1500	145	1682	16168	284	27673
1 1	150	2250	217	2513	24000	424	41217
/2 Days off	200	3000	289	3345	31832	563	54760

Treatment and Safety Profile

# of events	Severity
N = 3	Mild
N = 1	Moderate
N = 1	Mild
	N = 3 N = 1 N = 1

Conclusions

- Based upon the pharmacokinetic profile of RX-5902 administered weekly, a more frequent dosing schedule should be effective
 - Preliminary pharmacokinetic data helped to validate the pharmacokinetic simulations to predict pharmacokinetic profiles at more frequent dosing

Investigator Disclosures

- 1 Christine Peterson, PhD Revahn Pharmaceuticals
- 2. Elv Benaim, MD Rexahn Pharmaceuticals

For further information about RX-5902 and Rexahn Pharmaceuticals please contact Dr. Ely Benaim: benaime@rexahn.com, (240) 268-5300