Oligonucleotide CMC for Sustainable and Scalable Enzymatic siRNA Manufacturing

Alison Moore, CTO Derek Gauntlett, Head of ECO Process Development

TIDES US 2025

Codexis: Your Technology Enabler for Complex Therapeutics

- Headquartered in California, USA
- 22+ years of enzyme expertise
- 16+ commercialized therapies using Codexis enzymes
 - PAXLOVID[™], Januvia[®], Janumet[®]
- Pioneering enzymatic RNA manufacturing through 2 proven methods with our ECO Synthesis[™] Manufacturing Platform
 - dsRNA fragment ligation
 - Sequential enzymatic synthesis

RNA Synthesis – An Evolving Manufacturing Landscape

CODEXIS

RNA Synthesis – An Evolving Manufacturing Landscape

RNA Synthesis – An Evolving Manufacturing Landscape

Capping DMTO-O-B iPr, N-PO-CN iPr-N-PO-CN iPr-N-PO-CN iPr-N-PO-CN iPr-N-PO-CN iPr-N-PO-CN iPr-N-PO-CN iPr-N-PO-CN iPr-N-PO-CN iPr-N-PO-CN iPr-N-PO-CN		RNA oligonucleotide product	Extending HO-P-O-P-O-P-O-P HO'O' HO'O' B HO'O' B HO'O' B HO'O' B HO'O' B HO'O' B HO'O' B HO'DO B HO B HO'DO B HO B HO B HO B HO B HO B HO B HO B
	Phosphoramidite Chemistry	Enzymatic Ligation	Enzymatic Sequential Synthesis
Development status	>40 years; mature w/ incremental improvements	Ready for manufacturing today	Operational at 10-100g with path to GMP manufacturing
Product quality	High	High	High
Product yield	High	Higher	Higher
ESG	>3000 kg organic solvent/kg API	Partially aqueous / organic	Fully aqueous

ECO Synthesis[™] Technology Provides High Performance and Versatility

- First successful enzymatic synthesis of Inclisiran[®] a commercial therapeutic asset
- Routes 2-4 produced siRNA therapeutic assets of equal quality and yield

$(GalNAc)_{3} = (GalNAc)_{3} = (Gal$

Route 1:

Fully enzymatic, sequential synthesis using ECO Synthesis for both strands & incorporation of targeting moiety

Route 2:

Oligo fragments synthesized by SPOS chemical method & ligated

Route 3:

Oligo fragments synthesized by both chemical or enzymatic methods & ligated

Route 4:

Oligo fragments synthesized by ECO Synthesis & ligated

CODEXIS

ECO Synthesis Technology can offer Stereochemical Control

Stereochemistry can impact efficacy, half-life, and toxicity of therapeutic oligos

CODEXIS

Sakamuri, et al. ChemBioChem 2020. 21, 1304-1308; Jahns, et al. Nuc. Acids Res. 2022. 50,3 1221-1240; Liu, et al. Nuc. Acids Res. 2023. 51, 9, 7 4126-4147

ECO Synthesis Technology using Immobilized Enzymes can Deliver Highly Scalable Processes

Standard Equipment

80 cm dia.

1,500 L reservoir

Sequential ECO Synthesis Platform*

Maximum Batch Size (theoretical) 5x +

Number of Synthesis runs

>75% decrease

Production Time (months) >50% decrease

CapEx for facility build

>70% decrease

*Comparison vs. phosphoramidite chemistry, modeled based on inclisiran sequence, 2 trains, 24/7 operation, facility capacity ~1,000 kg per year

Sequential ECO Synthesis Performance Continues to Improve

Process Metric	TIDES EU 2024 -> TIDES US 2025		
Coupling Efficiency	Constant at >98.5%		
Synthesis Concentration	Constant at 6mM		
Oligo Synthesis Recovery	Increased by from 25 to 75%		
Avg. Cycle Time (h)	Decreased by ~24%		
PS->PO Impurity (%)	Decreased by >75% to <1.5% per strand		
N-X Impurity (%)	Constant at <10% per strand		
N+X Impurity (%)	Decreased by 5% at <6% per strand		

Values based on syntheses of 21mer Sense and 23mer Antisense strands

Sequential ECO Synthesis[™] results in yields of ≥30 g/L siRNA

CODEXIS

Immobilized dsRNA Ligase can Deliver Clinical Quality siRNA

* SPOS crude fragments not of sufficient quality (<75% purity per fragment) for comparable assessment

Ligation Fragment Design for Optimal Ligation Performance

Two nick / four-fragment approach used for the generation of Inclisiran[®]

Ligation Reaction Conditions

Parameter	Condition
Fragment Concentration (mM)	2
Duplex Concentration (g/L)	30
Codexis dsRNA Ligase	Immobilized
Buffer Composition	Aqueous
Incubation Temperature (°C)	33
Incubation Time (h)	4

Fragment Design

Optimized fragment design for ligation using Codexis Machine Learning - guided fragment design

Starting Fragment Purity for Each Chemistry Route

Fragment Workup	AS1 (15mer) % Purity	AS2 (8mer) % Purity	S1 (14mer) % Purity	S2 (7mer + L96) % Purity
ECO Crude	88.6	93.5	89.6	88.3
SPOS Purified	88.9	93.2	97.7	91.9
ECO Purified	89.8	94.9	97.4	95.8

Fragment purity table – Purity data from denaturing IP-RP LC-UV-MS

- ECO crude fragments resulted in a 99% coupling efficiency from synthesis.
- ECO crude fragments were purified to match the source SPOS purified fragment purity.
- SPOS crude fragments were sourced but they were not of sufficient quality for use <75% purity per fragment.

Crude RNA Fragments can Generate High-Quality siRNA Duplex using AEX Purification Post Ligation

Ligation Pathway	Conversion (%)	Sense Strand (%)	Antisense Strand (%)	Crude Duplex Purity (%)	Residual Ligase (PPM)	Notable Impurities
ECO Crude	>92	33.4	49.1	77.9	< LOD [2.5ppm]	AS1, S1, S2, N-1 & N+1, PS/PO
Crude Duplex purified via AEX chromatography						
Ligation Pathway	Conversion (%)	Sense Strand (%)	Antisense Strand (%)	Duplex Purity (%)	Residual Ligase (PPM)	Notable Impurities
ECO Crude	N/A	40.1	53.2	98.3	< LOD [2.5ppm]	S -mC, AS +mG, PS/PO

~70% purification yield when purifying crude duplex with a starting purity of ~78%

Crude ECO Synthesis Fragments can Skip Fragment Purification

S

High Purity RNA Fragments Can Result in High-Quality siRNA Duplex without further Purification

Ligation Pathway	Conversion (%)	Sense Strand (%)	Antisense Strand (%)	Crude Duplex Purity (%)	Residual Ligase (PPM)	Notable Impurities (IP-RP-UV-MS)
SPOS Purified	>95	35.4	48.2	92.1	< LOD [2.5ppm]	AS1, S – mC
ECO Purified	>98	43.8	49.4	97.9	< LOD [2.5ppm]	AS +mG, AS +mA, AS +fA
Me	thod	Denaturing	IP-RP-UV-MS	Non-denaturing SEC	LC/MSMS	
mAU 1 1000 - 800 - 600 - 400 - 200 -	Inclisiran	Excess Antisense	S Purified SEC Unligated AS1	m#U 1800- 1600- 1200- 1000- 800- 800- 800- 800- 800-	Excess Antisens	e e e
1:		45.288 59.846 69.126	75.901		37.081 45.884 56.95 60.765 67.267	

Nondenaturing SEC chromatograms UV260nm

Starting Fragment Impurity Profile is a Critical Quality Attribute for Ligation

Note: Samples loaded at a high concentration to elucidate low level impurities

Ligation using ECO Synthesis Fragments is Reproducible

Note: Samples loaded at a high concentration to elucidate low level impurities

mAU

Immobilized Ligation can Significantly Simplify siRNA Manufacturing

Process Unit Operations	Traditional Synthesis	Crude Fragment Ligation with Duplex Purification	High Purity Fragment Ligation without Duplex Purification		
Synthesis	2	4	4		
Oligonucleotide Purification	2	1	0		
Ultrafiltration / Diafiltration	2	1	1		
Annealing	1	0	0		
Process simplification results in volumetric productivity gains when using					

ECO Synthesis technology

DFXIS

ECO Synthesis Technologies deliver dramatic improvements in siRNA manufacturing

1. Immobilizing dsRNA ligase removes residual ligase and simplifies downstream processing

2. Fragment quality and stoichiometry are critical quality attributes for ligation

3. dsRNA ligation is reproducible and can result in high purity and high yield siRNA

4. ECO Synthesis technologies can enable simple, large scale production of siRNA

5. Codexis will continue to build industrializable, high quality, production processes using ECO Synthesis and will be meeting with FDA to discuss in June

What's next for ECO Synthesis Manufacturing Platform

- Continued process development with demonstrated scale up (2H 2025)
 - Drive bench scale to larger scale productions for both sequential and ligation siRNA processes
 - Evaluate batch to batch variability from incoming fragments and enzyme lots
 - Further decrease cycle times using sequential synthesis, and gain volumetric productivity improvements

Why Partner with Codexis?

Expert siRNA manufacturing drives next-gen enzymatic synthesis adoption

The partnership to enable your innovations

The ECO Synthesis Innovation Lab discovers what's possible The technology to scale sustainably

Achieve greater scale through a greener route The expertise to power your project

Our 22+ years of expertise accelerates process development for enzymatic siRNA manufacturing

Questions and thank you

• TIDES talk in the Exhibit Hall at 10:10 on

Comparative Analysis of Diastereomeric Distribution in siRNA Synthesis: PAC vs Enzymatic Synthesis

• Visit us at booth 619

