

ResMed's Clinical Strategy — Sleep Apnea and Beyond

- Clinical Perspective on SDB
- Core market
 - Obstructive Sleep Apnea
- Adjacent Markets
 - Respiratory Failure
 - Central Sleep Apnea
- Serve HF
 - What do the results mean
- Where to from here?

Sleep Disordered Breathing

- 3 very different abnormal patterns of breathing during sleep
 - Obstructive sleep apnea
 - Central sleep apnea
 - Respiratory failure
- OSA is easily the most common affecting approximately 26% of the general adult population
- OSA accounts for over 80% of patients
- CSA accounts for 10% of patients

OSA and Upper Airway Collapse

OSA

$\langle \rangle$

Apnea Hypopnea Index

- Apnea Hypopneas Index is a measure of severity
- AHI is the number of events divided by time asleep
 - AHI less than 5 is considered normal
 - AHI from 5 to 15 is mild sleep apnea
 - AHI from 15 to 30 is moderate sleep apnea
 - AHI above 30 is severe sleep apnea

Obstructive vs. Central Sleep Apnea

Symptoms

- Men present with "typical" OSA symptoms
 - Snoring
 - Witnessed apneas
 - Daytime sleepiness
- Women often present with different symptoms, causing misdiagnosis
 - Insomnia
 - Restless legs
 - Fatigue/depression
 - Headaches and muscle pain

OSA reduces quality of life — CPAP <u>improves</u> quality of life

Cardiovascular Consequences of Sleep Apnea

Sleep Apnea: Highly prevalent in key chronic diseases

Effect of CPAP on Upper Airway

PAP Patient Interfaces: smaller, quieter, more comfortable

Over the past 25 years there have been large improvements in the equipment used for treatment

PAP Flow Generators: smaller, quieter, more comfortable

Positive Airway Pressure (PAP) Therapy

Automatic Positive Airway Pressure (APAP)

- Used in long term therapy or titration
- Raises pressure to prevent events and lowers it if no events
- Monitor flow to predict events
 - Apnea
 - Hypopnea
 - Snoring
 - Flow limitation

Respiratory Failure and Ventilation

Respiratory Failure

Positive Airway Pressure (PAP) Therapy

Respiratory Failure Treated

Ventilation for Acute COPD

References: Chandra et al, AJRCCM online pub 20 October 2011

Home NIV for Chronic COPD

THE LANCET Respiratory Medicine

Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial

Thomas Köhnlein, Wolfram Windisch, Dieter Köhler, Anna Drabik, Jens Geiseler, Sylvia Hartl, Ortrud Karg, Gerhard Laier-Groeneveld, Stefano Nava, Bernd Schönhofer, Bernd Schucher, Karl Wegscheider, Carl P Criée, Tobias Welte

Our new respiratory care platform

Life Support Ventilation

- Designed to enrich life for patients
 - Greater freedom
 - Versatile choices
 - Saves time, so that clinicians and staff can focus on patients

reddot design award product design 2014

Central Sleep Apnea

- Abnormal breathing due to problems with respiratory control
- Complex Sleep Apnea/ Mixed Sleep Apnea
 - Associated with OSA (5 to 10% of sleep studies)
- 2. Opioid induced CSA
 - Chronic users of prescribed narcotics
- 3. Associated with chronic diseases
 - Heart failure, diabetes, renal failure, stroke

- ASV is used to treat all of these subgroups
 - Complex SA accounts for most prescriptions
 - Around 25% of scripts are for heart failure

Obstructive vs. Central Sleep Apnea

Adaptive Servo Ventilation

Adaptive Servo Ventilation — mechanism of action

- Primary endpoint
 - Time to first event of all cause mortality or unplanned hospitalization for worsening heart failure
- Secondary endpoints
 - Quality of Life (MLWHF, Euroquol)
 - Exercise Tolerance (6 MWD)
 - NYHA class
- Major substudy
 - Left ventricular function and BNP
 - Sleep

- Multi-center, outcome study
 - Comparing control (optimal medical management) with active treatment (optimal medical treatment plus ASV)
 - Sample size:1325 patients and 651 events
 - 91 active centres

Patient Selection

- Severe heart failure
 - Symptoms on maximal therapy
- Moderate and Severe Central Sleep Apnea
 - AHI>15

- Systolic heart failure = HFrEF
 - Around 50% of HF, men, coronary disease
- Diastolic Heart Failure = HFpEF
 - Around 50% of HF, women, elderly, hypertensive, obese
 - Not studied in SERVE-HF

Field Safety Notice — issued 13 May 2015

Numbers of events reached late April and analysis began

- Preliminary primary end-point analysis showed no significant difference between patients treated with ASV and those in the control group:
 - Time to all-cause mortality or unplanned hospitalization for worsening heart failure (HR =1.136 [0.974 - 1.325], p=0.104)

- However, there was a 2.5% absolute increased annual risk of cardiovascular mortality for those randomized to ASV therapy compared to the control group:
 - 10% of the ASV group experienced a CV death each year compared to 7.5% of the control group, (HR=1.335 [1.070-1.666), p=0.010).

Field Safety Notice — issued 13 May 2015

- The increased risk appears to be greater in those with more severe ventricular dysfunction
- The majority of excess mortality is due to death occurring out of hospital (likely sudden cardiac death).
- The risk does not diminish with time on therapy and is independent of perceived symptomatic benefit from therapy.
- Working with professional societies to reach patients at risk and with a tier one medical journal to expedite publication.

PAP Therapy is Safe outside SERVE-HF patient group

- SERVE-HF population very different to other PAP users
- Untreated OSA is associated with increased CV mortality
- No safety signals among several large trials and several demonstrate a lowering of mortality with PAP therapy
- NIV reduces mortality in COPD
- Less information about ASV but no safety issues

Marin et al, Lancet 2005;365:1046-53

SERVE-HF results only apply to its specific patient group

Sleep Apnea: Many clinical targets for ResMed to focus on

Where are we going next in clinical research?

- Many opportunities exist to increase market size through demonstrating the influence of therapy on chronic diseases.
- ResMed remains committed to advancing the field through scientific research.

> Thank you

