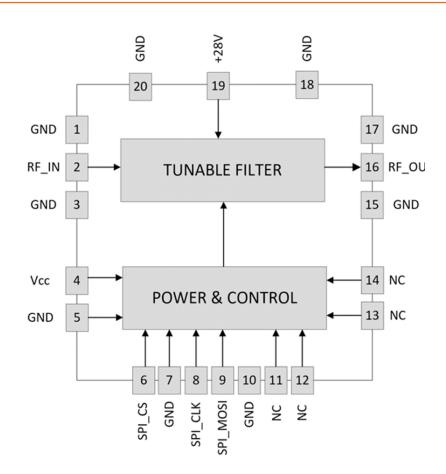


SAX280

Small Form Factor

UHF [225 – 400] MHz Tunable Bandpass Filter


Applications

Military Radios Military Radar SATCOM

Test and Measurement

Features

- +27dBm CW Continuous Power Handling
- Low Insertion loss [4.2dB typ]
- 15dB Selectivity [typ] @ +/- 10%
- Low Power Consumption [<100 mW]

Specifications

Parameter	Specification	Min	Тур	Max	Units
Tunable Frequency Range	[225 - 400] MHz	225	-	400	MHz
Passband Bandwidth	[225 - 400] MHz	-	5	-	%
Input / Output Impedance	-	-	50	-	Ohms
Return Loss	[225 - 400] MHz	9.54	15.56	-	dB
Insertion Loss	[225 - 400] MHz	-	4.0	4.4	dB
Rejection	Fc +/- 10 %	14	15	-	dB
	10 MHz to 0.5*Ftune	30	50	-	dB
	2*Ftune to 750 MHz	30	50	-	dB
P1dB Input Power	[225 -400] MHz	-	27	-	dBm
IIP3	[225 -400] MHz	46	-	-	dBm
Tuning Time	-	-	15	25	μs
Tuning Step Size	[225 – 400] MHz	-	2	-	MHz
Vcc	+5.0V Supply Voltage	+4.9	+5.0	+5.1	V
lcc	+5.0V Supply Current	-	16	18	mA
Vbb	+28V Supply Voltage	+27	+28	+29	V
Ibb	+28V Supply Current	-	0.2	0.3	mA
Size	[0.5 x 0.5 x 0.2]				inch

Environmental

Vibration Testing Vehicular to MIL_STD_810G Method 514.6

Jet Fighter to MIL_STD_810F Method 514.5G

Operational Temperature -40 to +85°C

Storage Temperature -40 to +125°C

Timing / SPI Control

Tuning Algorithm: Binary equivalent to desired tune Frequency [MHz]

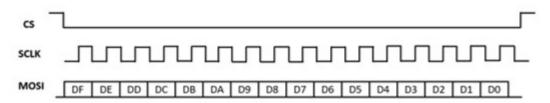
The SAX280 Tunable Filter is controlled as a slave SPI device. The SPI interface is used to input a 16-bit filter select word. This interface is Write-only so there are only three SPI signals required:

• CS input: When CS is low, the SPI bus is enabled.

When CS is high, signals on the other SPI inputs are ignored.

SCLK: Serial data clock generated by the SPI bus master.

• MOSI: Data from master to slave (Master Out, Slave In).


MISO: Always Logic Low. [Internally factory set]

The timing of the SPI bus is:

- The base value of the clock is low (0).
- The unit reads the incoming data (MOSI) on the rising edge of the clock SCLK.
- The maximum allowed SCLK rate is 1.0 MHz.

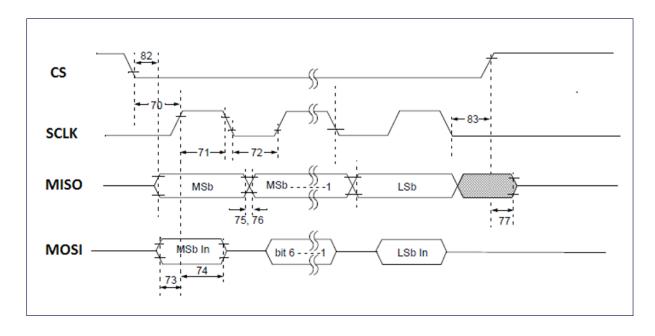
The figure below shows the SPI bus set command operation:

- The SPI bus master sets CS low and generates the SCLK.
- The master sends a 16-bit filter select word (MSB first) on the MOSI line.
- After the last clock pulse, the SPI bus master sets CS high.

SAX280 uses a +28.0V supply for switches and a +5.0V supply for control.

All Digital I/O are supplied at +5.0V.

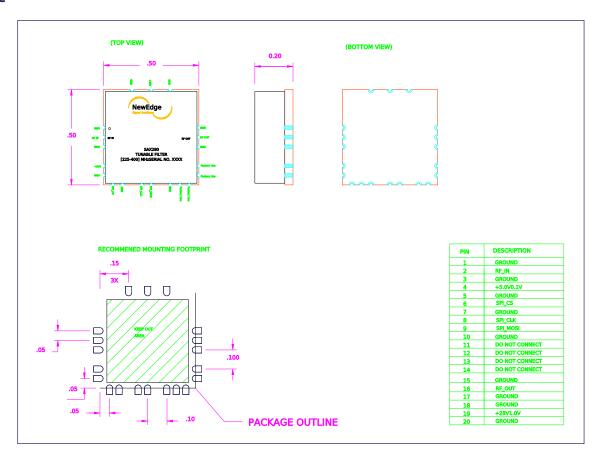
• CS input: Logic low = 0.8V Max., Logic High = 2.0V Min.


• SCLK: Logic low = 0.2V Max., Logic High = 4.0V Min.

• MOSI: Logic low = 0.2V Max., Logic High = 4.0V Min.

• MISO: Output is always Logic Low = 0.8V Max.

SPI Timing and Requirements


Parameter No.	Symbol	Characteristic	Min	Max	Units
70	TssL2sc	CS Fall ro SCLK Fall or Rise	62.5	"	ns
71	TscH	SCLK Input High Time	25	"	ns
72	TscL	SCLK Input Low Time	30	"	ns
73	Tdi2sc	Setup Time of Data Input to SCLK Edge	25	"	ns
74	Tsc2di	Hold Time of Data Input to SCLK Edge	25	11	ns
75	TdoR	Data Output Rise Time	"	30	ns
76	TdoF	Data Output Fall Time	п	20	ns
77	TssH2Z	CS Rise to Data Output High Impedance	10	50	ns
82	Tss2doV	Data Output Valid After CS Falling Edge	п	60	ns
83	Tsc2ssH	CS Rise after SCLK edge	133.5	"	ns

Pinout Table

Pin No.	Label	Description, Conditions	
1, 3, 5, 7, 10, 15, 17, 18, 20	GND	Digital and Analogue Ground	
2	RF_IN	RF Input Signal	
4	Vcc	+5.0V Supply Voltage Input	
6	SPI CS	Serial Tune Chip Select	
8	SPI CLK	Serial Tune Interface Clock. Data is latched onto the rising edge.	
9	SPI MOSI	Serial Tune Interface Master Out Slave Input	
11, 12, 13, 14	NC	Factory Use Only	
16	RF_OUT	RF Output Signal	
19	Vbb	+28V Supply Voltage	

Outline

Disclaimer

Specifications are subject to change without notice. NewEdge Signal Solutions, LLC believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by NewEdge Signal Solutions for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of NewEdge Signal Solutions. NewEdge Signal Solutions makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by NewEdge Signal Solutions in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. NewEdge Signal Solutions products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the NewEdge Signal Solutions product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. All product sales are governed under NewEdge Signal Solutions Terms and Conditions (http://www.newedges2.com/TermsandConditions.pdf) as of date of purchase.

Global Stocking Distributor

Richardson RFPD www.richardsonrfpd.com

Regional Direct Sales Representatives

Upstate New York & New England: **WLM Components** www.wlmcomponents.com

Long Island / NJ / Eastern PA: **Sertechmcm** www.sertechmcm.com

FL/GA/SC/NC/AL/MS/TN: Eastern Component Sales

www. eastern components ales. com

India Market: Unified Electro-Tech PVt. Ltd

www.unified.co.in email: venkat_reddy@unified.co.in

