Protecting the Gut Microbiome from Antibiotics

Sheila Connelly
Forward-Looking Statements

This presentation includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, on Synthetic Biologics’ current expectations and projections about future events. In some cases forward-looking statements can be identified by terminology such as "may," "should," "potential," "continue," "expects," "anticipates," "intends," "plans," "believes," "estimates," "indicates," and similar expressions. These statements are based upon management’s current beliefs, expectations and assumptions and are subject to a number of risks and uncertainties, many of which are difficult to predict and include statements regarding our timeline for our SYN-004 (ribaxamase) and SYN-010 clinical trials and reporting of data, the size of the market, benefits to be derived from use of SYN-004 (ribaxamase) and SYN-010, our anticipated patent portfolio, and our execution of our growth strategy. The forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially from those set forth or implied by any forward-looking statements. Important factors that could cause actual results to differ materially from those reflected in Synthetic Biologics’ forward-looking statements include, among others, our product candidates demonstrating safety and effectiveness, as well as results that are consistent with prior results, our ability to initiate clinical trials and if initiated, our ability to complete them on time and achieve the desired results and benefits, our clinical trials continuing enrollment as expected, our ability to obtain regulatory approval for our commercialization of product candidates or to comply with ongoing regulatory requirements, regulatory limitations relating to our ability to promote or commercialize our product candidates for the specific indications, acceptance of our product candidates in the marketplace and the successful development, marketing or sale of our products, developments by competitors that render our products obsolete or non-competitive, our ability to maintain our license agreements, the continued maintenance and growth of our patent estate, our ability to become or remain profitable, our ability to establish and maintain collaborations, our ability to obtain or maintain the capital or grants necessary to fund our research and development activities, a loss of any of our key scientists or management personnel, and other factors described in Synthetic Biologics’ annual report on Form 10-K for the year ended December 31, 2017, subsequent quarterly reports on Form 10-Qs and any other filings we make with the SEC. The information in this presentation is provided only as of the date presented, and Synthetic Biologics undertakes no obligation to update any forward-looking statements contained in this presentation on account of new information, future events, or otherwise, except as required by law.
The Gut Microbiome Regulates Human Physiology

Gut Microbiota Involved in

- Digestion
- Immune Regulation
- Protection from pathogens
- Metabolic, CV, Neuro, Immune, Inflammatory, and other diseases
- Reservoir of antibiotic resistance
The Gut Microbiome Regulates Human Physiology

Gut Microbiota Involved in

- Digestion
- Immune Regulation
- Protection from pathogens
- Metabolic, CV, Neuro, Immune, Inflammatory, and other diseases
- Reservoir of antibiotic resistance

Disrupted by

- Opportunistic infections
- Antibiotics
- C. difficile
- VRE
- MDR
The Gut Microbiome Regulates Human Physiology

Synthetic Biologics is developing therapies to protect the gut microbiome from antibiotic collateral damage.
• SYN-004 (ribaxamase) is a beta-lactamase enzyme
• Formulated for oral delivery
• For use with selected IV beta-lactam antibiotics
• Released in the upper small intestine
• Intended to degrade antibiotics in the GI tract
• To protect gut microbiome
Beta-Lactamases: From Enemies to Therapies

Ribaxamase is intended to degrade residual antibiotics in the GI tract without affecting antibiotic infection control efficacy

- Protect the gut microbiome
- Prevent opportunistic infections (C. difficile)
- Reduce antibiotic resistance
Ribaxamase Clinical Trials

Completed two Phase 1, two Phase 2a, and Phase 2b trials

- **Well-tolerated** alone and in combination with IV ceftriaxone
- **Negligible absorption** of ribaxamase at doses up to 5x those used in Phase 2b
- **Degraded** ceftriaxone in chyme
- Was effective with proton pump inhibitors
- **Did not alter PK** of IV ceftriaxone

Phase 2b Proof of Concept Study

Patients received IV ceftriaxone for a lower respiratory infection + ribaxamase or placebo

- **Met primary endpoint** of significant reduction in *C. difficile* disease
- **Significantly reduced** new colonization by vancomycin-resistant enterococci
- **Protected the gut microbiome** from antibiotic damage
- Reduced emergence of antibiotic resistance
Ribaxamase Pipeline Products

Ribaxamase is intended for use with selected IV penicillins and cephalosporins
Ribaxamase Pipeline Products

Ribaxamase is intended for use with selected IV penicillins and cephalosporins

Use with oral antibiotics → SYN-007

- Delayed-released formulation of ribaxamase
- Intended for release distal to site of oral antibiotic absorption
- Tested in canine model
Ribaxamase Pipeline Products

Ribaxamase is intended for use with selected IV penicillins and cephalosporins

Use with oral antibiotics → SYN-007

- Delayed-released formulation of ribaxamase
- Intended for release distal to site of oral antibiotic absorption
- Tested in canine model

Use with carbapenems → SYN-006

- Novel metallo-beta-lactamase with broad antibiotic degradation activity
- Formulated for oral delivery (enteric coating)
- Potential to protect gut microbiome from all classes of beta-lactams
- Tested in pig model
SYN-007 Allows Oral Amoxicillin Absorption in Dogs

Oral amoxicillin +/- SYN-007 TID, 16 doses
Serum amoxicillin PK, after first and last dose
Feces for metagenomic analyses collected before and after treatment

p=0.10 Area Under the Curve

Amoxicillin Serum PK After 16 Doses

Student T-test, 2 tailed, unpaired, unequal variance
SYN-007 Preserves Dog Gut Microbiome Diversity

Shannon Alpha Diversity

p=0.0007

p=0.1555

Alpha diversity compared to pretreatment:

- Significantly different with oral amoxicillin alone
- NOT significantly different with SYN-007

*One way ANOVA-Kruskal-Wallis test, multiple comparisons
SYN-007 Reduces Emergence of Antibiotic Resistance Genes

Resistome analysis of fecal DNA whole genome sequencing data
Heatmap of beta-lactamase gene frequency
SYN-007 Reduces Emergence of Antibiotic Resistance Genes

Resistome analysis of fecal DNA whole genome sequencing data
Heatmap of beta-lactamase gene frequency

Increased frequency of beta-lactamase genes with amoxicillin alone
Emergence of beta-lactamase genes attenuated with SYN-007
SYN-007 Protects Gut Microbiome from Amoxicillin/Clavulanate

Amoxicillin Serum PK (Day 6)

Oral amoxicillin/clavulanate +/- SYN-007 TID, 16 doses

Serum amoxicillin PK, after first and last dose

Feces for metagenomic analyses collected before and after treatment

*A Student T-test, unpaired, 2 tailed, non-parametric, Mann Whitney test
SYN-007 Protects Gut Microbiome from Amoxicillin/Clavulanate

Amoxicillin Serum PK (Day 6)

Principal Coordinate Analysis (Jaccard)

*Student T-test, unpaired, 2 tailed, non-parametric, Mann Whitney test
SYN-007 Protects Gut Microbiome from Amoxicillin/Clavulanate

Amoxicillin Serum PK (Day 6)

Amoxicillin Serum PK (Day 6) after pretreatment and post-treatment with Amoxicillin/Clavulanate and Amoxicillin/Clavulanate + SYN-007. The AUC is p=0.8413.

Principal Coordinate Analysis (Jaccard)

Principal Coordinate Analysis (Jaccard) showing the difference in microbiome before and after treatment with Amoxicillin/Clavulanate and Amoxicillin/Clavulanate + SYN-007.

*Student T-test, unpaired, 2 tailed, non-parametric, Mann Whitney test
SYN-007 Protects Gut Microbiome from Amoxicillin/Clavulanate

Amoxicillin Serum PK (Day 6)

- **Amox/Clav**
- **Amox/Clav+SYN-007**

Principal Coordinate Analysis (Jaccard)

- Pretreatment: Amoxicillin/Clavulanate
- Amoxicillin/Clavulanate + SYN-007
- Post-treatment: Amoxicillin/Clavulanate
- Amoxicillin/Clavulanate + SYN-007

_AUC: p=0.8413*

Student T-test, unpaired, 2 tailed, non-parametric, Mann Whitney test
SYN-007 Protects Gut Microbiome from Amoxicillin/Clavulanate

Amoxicillin Serum PK (Day 6)

- **Amox/Clav Amox/Clav+SYN-007**
- AUC: p=0.8413

Principal Coordinate Analysis (Jaccard)

Pretreatment: Amoxicillin/Clavulanate

Post-treatment: Amoxicillin/Clavulanate + SYN-007

Student T-test, unpaired, 2 tailed, non-parametric, Mann Whitney test
SYN-006 Does Not Affect Ertapenem Serum PK in Pigs

SYN-006 is a carbapenemase formulated for oral delivery

IV ertapenem SID +/- oral SYN-006 TID for 4 days

Serum ertapenem PK, day 3

Feces for metagenomics analyses collected before and after treatment

*Student T-test, 2 tailed, unpaired, unequal variance
SYN-006 Preserves Pig Gut Microbiome Diversity

Shannon Alpha Diversity

Post/Pretreatment ratios significantly different with ertapenem alone and ertapenem + SYN-006

Student T-test, 2 tailed, unpaired, unequal variance
SYN-006 Reduces Propagation of Antibiotic Resistance Genes

Resistome analysis of fecal DNA whole genome sequencing data
Heatmap of antibiotic resistance gene frequency
SYN-006 Reduces Propagation of Antibiotic Resistance Genes

Resistome analysis of fecal DNA whole genome sequencing data
Heatmap of antibiotic resistance gene frequency

SYN-006 attenuated ertapenem-induced increased frequency of aminoglycoside, macrolide, tet, and efflux pump AR genes
Antibiotic inactivation represents a new treatment paradigm for preservation of the gut microbiome and reduction of antibiotic resistance.
Acknowledgements

CEO and BD
Steven Shallcross
Vince Wacher

Research and Development
Mike Kaleko
Sheila Connelly
Christian Furlan Freguia

CMC
Ray Stapleton
Andy Bristol
Steve Hubert

Clinical
Joe Sliman
John Kokai-Kun
Charles Le
Heidi Whalen
Tracey Roberts
Heather McFall
Lara Guzman
Ken Trout

Quality Assurance
Karen Hughes

Regulatory Affairs
Amy Sloan
Scott Shapot

Medical Affairs
Deb Mathews
Trudi Delk

CosmosID, Inc.
Rita R. Colwell
Nur A. Hasan
Poorani Subramanian
Brian Fanelli

Diversigen, Inc.
Resistome for Phase 2b

DNA Genotek, Inc.
16S for Phase 2b

CDC Contract 200-2016-91935
Provided funding for the Phase 2b resistome study
Thank You