Clinical Development of Ribaxamase, an Oral-Beta Lactamase Intended to Protect the Gut Microbiome and Prevent *C. difficile* Infection

Christian Furlan Freguia
Forward-Looking Statements

This presentation includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, on Synthetic Biologics’ current expectations and projections about future events. In some cases forward-looking statements can be identified by terminology such as "may," "should," "potential," "continue," "expects," "anticipates," "intends," "plans," "believes," "estimates," "indicates," and similar expressions. These statements are based upon management’s current beliefs, expectations and assumptions and are subject to a number of risks and uncertainties, many of which are difficult to predict and include statements regarding our timeline for our SYN-004 (ribaxamase) and SYN-010 clinical trials and reporting of data, the size of the market, benefits to be derived from use of SYN-004 (ribaxamase) and SYN-010, our anticipated patent portfolio, and our execution of our growth strategy. The forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially from those set forth or implied by any forward-looking statements. Important factors that could cause actual results to differ materially from those reflected in Synthetic Biologics’ forward-looking statements include, among others, our product candidates demonstrating safety and effectiveness, as well as results that are consistent with prior results, our ability to initiate clinical trials and if initiated, our ability to complete them on time and achieve the desired results and benefits, our clinical trials continuing enrollment as expected, our ability to obtain regulatory approval for our commercialization of product candidates or to comply with ongoing regulatory requirements, regulatory limitations relating to our ability to promote or commercialize our product candidates for the specific indications, acceptance of our product candidates in the marketplace and the successful development, marketing or sale of our products, developments by competitors that render our products obsolete or non-competitive, our ability to maintain our license agreements, the continued maintenance and growth of our patent estate, our ability to become or remain profitable, our ability to establish and maintain collaborations, our ability to obtain or maintain the capital or grants necessary to fund our research and development activities, a loss of any of our key scientists or management personnel, and other factors described in Synthetic Biologics’ annual report on Form 10-K for the year ended December 31, 2016, subsequent quarterly reports on Form 10-Qs and any other filings we make with the SEC. The information in this presentation is provided only as of the date presented, and Synthetic Biologics undertakes no obligation to update any forward-looking statements contained in this presentation on account of new information, future events, or otherwise, except as required by law.
The Gut Microbiome Regulates Human Physiology

Gut Microbiota Involved in

- Digestion
- Nutrient absorption
- Vitamin synthesis
- Protection from MDR organisms
- Immune, Metabolic, CV, Neuro Physiology

Discuss a strategy to protect the gut microflora from antibiotic damage
Ribaxamase Program Overview

- Orally administered β-lactamase for use with IV penicillins and cephalosporins
- Enteric coated pellets that release the β-lactamase in the duodenum
- Designed to degrade the β-lactam antibiotic in the upper GI tract
- To remove the antibiotic from the chyme before it reaches the colon
- Ribaxamase is not absorbed, so it does not alter systemic antibiotic levels

Clinical Objectives

1. Diminish the risk of *Clostridium difficile* infection (CDI)
2. Prevent colonization by MDR pathogens (and secondary infections)
3. Slow the emergence and/or spread of MDR pathogens
4. Prevent changes to the microflora
Engineered for Improved Potency Against Cephalosporins

Class A serine β-lactamase

Isolated from *Bacillus licheniformis*

D276N aa substitution

<table>
<thead>
<tr>
<th>IV β-Lactam Use</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>Days on Therapy</td>
</tr>
<tr>
<td>Total IV Abx</td>
<td>23 million</td>
</tr>
<tr>
<td>IV β-lactams</td>
<td>17 million</td>
</tr>
<tr>
<td>% of Total</td>
<td>72%</td>
</tr>
</tbody>
</table>
Engineered for Improved Potency Against Cephalosporins

Class A serine β-lactamase

Isolated from *Bacillus licheniformis*

D276N aa substitution

<table>
<thead>
<tr>
<th>IV β-Lactam Use</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td></td>
</tr>
<tr>
<td>Total IV Abx</td>
<td>23 million</td>
</tr>
<tr>
<td>IV β-lactams</td>
<td>17 million</td>
</tr>
<tr>
<td>% of Total</td>
<td>72%</td>
</tr>
</tbody>
</table>

Individual β-Lactam Antibiotics

Days on Therapy

- Ceftriaxone: 30%
- Cefazolin: 23%
- Pip and Pip/Tazo: 27%
- Other: 9%
- Amp and Amp/Subbactam: 11%

Arlington Medical Resources (AMR), a Decision Resources Group Company 2014 audits of acute care hospital antibiotic utilization
Ribaxamase Formulation

Ribaxamase Enteric-Coated Pellets

pH Dissolution Profile

Stability in Human Chyme

Six fistulated dogs were treated with IV ceftriaxone (CRO) +/- oral ribaxamase.

Chyme was collected and assayed for CRO and ribaxamase.

Kaleko et al. (2016) Anaerobe 41:58
Ribaxamase Protected the Microbiome in Pigs

Ribaxamase Protected the Microbiome in Pigs

Ribaxamase Mitigated Expansion of Abx Resistance Genes

Ceftriaxone increased the abundance of resistance genes for multiple Abx. Ribaxamase reduced the emergence of antibiotic resistance.

Ribaxamase Mitigated Expansion of Abx Resistance Genes

Ceftriaxone increased the abundance of resistance genes for multiple Abx.
Ribaxamase reduced the emergence of antibiotic resistance.
Clinical Development
Early Clinical Trials --- Safety and Mechanism

Two Phase 1 studies in healthy volunteers

- Well tolerated up to 750 mg single dose and 300 mg q.i.d. for 7 days
- Not systemically absorbed and no anti-drug antibodies were detected

Two Phase 2a studies in volunteers with ileostomies

- Subjects received IV ceftriaxone +/- oral ribaxamase
- Ribaxamase did not affect the plasma PK of ceftriaxone
- Ribaxamase removed ceftriaxone from the chyme
- Ribaxamase was efficacious with proton pump inhibitors

Early Clinical Trials --- Safety and Mechanism

Ceftriaxone Alone

Ceftriaxone with Ribaxamase

CRO with Ribaxamase + PPI

Phase 2b Proof-of-Concept Study

84 Multinational Clinical Sites

Patients admitted to the hospital for treatment of a lower respiratory tract infection

Modified intent to treat = 412 patients

1:1

Ceftriaxone + Ribaxamase (plus a macrolide)

Ceftriaxone + Placebo (plus a macrolide)

Primary Endpoint
Prevention of *C. difficile* infection

Exploratory Endpoint
Protection of the gut microbiome

US, Canada, Romania, Bulgaria, Hungary, Poland, Serbia
Inclusion Criteria to Enriched for Risk of C. diff. Infection

Patients were admitted to a hospital for several days
At least 5 days of ceftriaxone use expected
Patients > 50 years old
Patients with high PORT scores
Design of the Phase 2b Study

Diarrhea → 3 or more loose stools in a 24 hour period, samples were collected

CDI → Local lab reported toxins A and/or B by an approved test
Sent to a central lab for confirmation by toxin ELISA
206 patients per group

Average age ~70

~2/3 of each group were males

~1/3 of each group received macrolides

~1/3 of each group received drugs for stomach acidity (PPIs)

The cure rates for the LRTI for both groups were comparable
Ribaxamase Protected Microbial Diversity in the Phase 2b Study

Phase 2b fecal samples were analyzed by 16S sequencing.

Alpha Diversity measure of the composition within an individual sample.

[Graph showing Chao1 diversity comparison between Placebo and Ribaxamase groups at different time points (T0, T1, T2).]
Ribaxamase Protected Microbial Diversity in the Phase 2b Study

Phase 2b fecal samples were analyzed by 16S sequencing.

Alpha Diversity measure of the composition within an individual sample.
Ribaxamase Protected Microbial Diversity in the Phase 2b Study

Principle coordinate analysis of the β-diversity of the patient samples
Each dot represents one patient sample

T0 T1 T2
p=0.0025 p=0.0064

Placebo Ribaxamase
Ribaxamase Protected Against *C. difficile* Infection

No CDI patient reported previous CDI
A Trend Towards Diminished New *C. difficile* Colonization

Number of patients negative for *C. difficile* on screening and positive in a subsequent sample

![Graph showing comparison between Placebo and Ribaxamase](image)
Ribaxamase Protected from Colonization by VRE

New colonization by Vancomycin-Resistant Enterococcus at 72 hours and 4 weeks

P-values are 1-sided based on the pre-specified Z-test
Ribaxamase Attenuated Changes to the Abx Resistance Genes

LefSe Analysis

- Green: Increased
- Red: Decreased
Ribaxamase Attenuated Changes to the Abx Resistance Genes

LefSe Analysis

- **Placebo**
 - Tet and erm resistance genes
 - Vancomycin resistance genes

- **Ribaxamase**
 - B-lactamase genes

- **Increased**
- **Decreased**
Pipeline Products

Use with oral antibiotics → SYN-007

- Beneficial for patients transferred from IV
- Potentially beneficial for all outpatients on oral β-lactams
- Developed a delay-released formulation of ribaxamase in the GI tract
- Preliminary data in dogs look encouraging

Use with carbapenems → SYN-006

- Increasing in usage and is very damaging to the microbiome
- The potential to diminish the emergence of carbapenem resistance
- Developing a metallo-β-lactamase with broad activity
- Currently testing in pigs
SYN-007 Enables Absorption of Oral Amoxicillin in Dogs

Oral amoxicillin +/- SYN-007 TID for 16 doses

Serum amoxicillin PK after the first and last dose

Feces for whole genome sequencing before and after the antibiotic regimen
SYN-007 Protects the Dog Gut Microbiome from Oral Amoxicillin

Principal Component Analysis (Bray-Curtis Dissimilarity)
SYN-007 Protects the Dog Gut Microbiome from Oral Amoxicillin

Principal Component Analysis (Bray-Curtis Dissimilarity)
Pipeline Products

Use with oral antibiotics → SYN-007

- Beneficial for patients transferred from IV
- Potentially beneficial for all outpatients on oral β-lactams
- Developed a delay-released formulation of ribaxamase in the GI tract
- Preliminary data in dogs look encouraging

Use with carbapenems → SYN-006

- Increasing in usage and is very damaging to the microbiome
- The potential to diminish the emergence of carbapenem resistance
- Developing a metallo-β-lactamase with broad activity
- Currently tested in pigs
SYN-006 does not Interfere with Ertapenem Plasma Levels in Pigs

IV Ertapenem +/- SYN-006 TID for 4 days
Serum ertapenem PK collected at day 3
Feces for whole genome sequencing before and after the antibiotic regimen

Ertapenem Serum Levels
SYN-006 Protects the Gut Microbiome in Pigs

Principal component analysis

- Ertapenem alone pre
- Ertapenem + SYN-006 pre
- Ertapenem alone post
- Ertapenem + SYN-006 post
SYN-006 Protects the Gut Microbiome in Pigs

Principal component analysis

- Ertapenem alone pre
- Ertapenem + SYN-006 pre
- Ertapenem alone post
- Ertapenem + SYN-006 post
SYN-006 Protects the Gut Microbiome in Pigs

Principal component analysis

- Ertapenem alone pre
- Ertapenem + SYN-006 pre
- Ertapenem alone post
- Ertapenem + SYN-006 post
SYN-006 Protects the Gut Microbiome in Pigs

Principal component analysis

- Ertapenem alone pre
- Ertapenem + SYN-006 pre
- Ertapenem alone post
- Ertapenem + SYN-006 post
Summary

Ribaxamase was shown in a Phase 2b clinical trial to protect the gut microbiome from CRO and diminish
 ➢ the incidence of CDI --- and potentially diminish its spread within a hospital
 ➢ overgrowth with VRE
 ➢ the emergence of resistance to multiple classes of antibiotics

Ribaxamase did not interfere with systemic antibiotic levels or antibiotic efficacy

The simple mechanism of action, validated in dog chyme and the pig microbiome, and similarly validated in human Phase 2 trials, supports the potential for success in future clinical trials

Goal is to enable a patient to leave the hospital with the same microbiome that he came in with
Acknowledgements

Research and Development
Mike Kaleko
Sheila Connelly
Christian Furlan Freguia

CMC
Ray Stapleton
Andy Bristol
Steve Hubert

Non-clinical Development
John Kokai-Kun

Clinical Development
Joe Sliman
Chris da Costa
Charles Le

Project Management
Olivia Coughlin
Lara Guzman

Clinical Operations
Heidi Whalen
Tracey Roberts
Heather McFall

Quality Assurance
Karen Hughes

Regulatory Affairs
Amy Sloan
Scott Shapot

Informatics
Ken Trout

Medical Affairs
Deb Mathews
Trudi Delk

CEO and Business Development
Steven Shallcross
Vince Wacher

CosmosID, Inc.
Rita R. Colwell
Nur A. Hasan
Poorani Subramanian
Brian Fanelli

DNA Genotek, Inc.
16S for Phase 2b

Diversigen, Inc.
Resistome for Phase 2b

CDC Contract 200-2016-91935
Provided funding for the Phase 2b resistome study