

PK-PD Relationship and PK Driver of Efficacy of the Novel Antibacterial Lysin Exebacase (CF-301) in Pre-Clinical Models

P. Ghahramani¹, J. Chiu¹, T. Asempa², K. Abdelraouf², D. Nicolau², W. Abdel Hady³, Y. Xiong³, A. Bayer³, T. Carabeo⁴, C. Cassino⁴, R. Schuch⁴, D. Lehoux⁴.

¹Inncelerex, Jersey City, NJ; ²Hartford Hosp., Hartford, CT, ³LA Biomed/UCLA Sch. of

Med., Los Angeles, CA, ⁴ContraFect, Yonkers, NY.

Parviz Ghahramani, PharmD, PhD, MSc, MBA.
Inncelerex, USA

June 12, 2019

BACKGROUND

- Exebacase (CF-301) a first in class bacteriophage-derived lysin
- Recombinant protein produced in E.coli
- Direct lytic agent
- Active against S. aureus
- Two functional domains

BACKGROUND - (cont'd)

- Specific features of exebacase include:
 - Novel MOA (cell wall hydrolase enzyme)
 - Bactericidal against resistant S. aureus
 - Fast, targeted action
 - Potent activity against biofilm
 - Synergy with standard of care antibiotics (e.g., daptomycin)
 - Low propensity for resistance
- Exebacase completed Phase 1 and Phase 2
- Encouraging clinical results in MRSA blood stream infections (BSI) with significant improvement about 43% higher than SoC alone

OBJECTIVES

The objectives of this project were:

- a) To develop animal population PK model in NONMEM in animal species
- b) Based on PK parameter estimates from the final population PK model, simulate animal exposure indices (AUC/MIC, C_{max}/MIC and T>MIC) for doses used in animal efficacy assessments
- c) To perform PK-PD analyses to characterize the PK-efficacy relationship and determine the PK driver of efficacy in animal models
- d) To guide selection of efficacious exposures and doses in humans

METHODS

Population PK analysis:

- Pooled from 15 PK studies in 4 animal species (mice, rats, rabbits and dogs)
- Various routes of administration: IV bolus, IV infusion, subcutaneous (SC) injections
- Various dosing regimens 0.125-50 mg/kg, q24h to q8h.
- A total of 2,602 PK observations from 592 animals (42 mice, 316 rats, 156 rabbits and 78 dogs)

For PK-PD analysis:

- Data from one study in mouse (NMTI model) with dose range 0.125-90 mg/kg;
 MICs in mouse serum 16-128 μg/mL
- Two studies in rabbit (IE model) cardiac vegetation, kidney and spleen with dose range 0.03-1.4 mg/kg; MICs in rabbit serum 0.5-1 μg/mL
- Exebacase was administered at various doses in addition to suboptimal dose of daptomycin

RESULTS - Population PK

RESULTS - Population PK : GOF Plots

RESULTS - Population PK: individual fit examples

RESULTS - PK-PD NMTI

RESULTS – PK-PD Relationship in mouse

Exposure					
Index	Parameter	Estimate	SE	p-value	Model RSE
AUC/MIC					0.388
	E ₀	8.46	0.16	< 0.0001	
	E _{max}	3.72	0.18	< 0.0001	
	EC ₅₀	0.04	0.01	< 0.0001	
	р	0.92	0.18	<0.0001	
C _{max} /MIC					0.390
	E ₀	8.46	0.16	< 0.0001	
	E _{max}	3.71	0.19	< 0.0001	
	EC ₅₀	0.01	0.00	0.0003	
	р	0.81	0.17	< 0.0001	
T>MIC					1.167
	E ₀	5.96	0.21	<0.0001	
	E _{max}	2.00	241.11	0.993	
	EC ₅₀	0.16	367.10	1.00	
	р	0.10	15.84	0.995	

RESULTS – PK-PD Rabbit Cardiac Vegetation

RESULTS – PK-PD Rabbit

RESULTS – PK-PD Relationship in Rabbit

Exposure					
Index	Parameter	Estimate	SE	p-value	Model RSE
AUC/MIC					1.212
	E ₀	9.10	0.50	< 0.0001	
	E _{max}	5.58	0.56	<0.0001	
	EC ₅₀	0.01	0.05	0.894	
	р	1.00	2.67	0.708	
C _{max} /MIC					1.193
	E _o	9.09	0.49	< 0.0001	
	E _{max}	5.73	0.57	<0.0001	
	EC ₅₀	0.04	0.10	0.669	
	р	1.00	1.27	0.432	
T>MIC					1.640
	E _o	4.13	0.23	< 0.0001	
	E _{max}	8.00	910.50	0.993	
	EC ₅₀	100.00	28160.00	0.997	
	р	0.50	3.61	0.890	

DISCUSSION

- NMTI model :
 - doses 15-30 mg/kg were associated with maximum efficacy, MICs in mouse serum ranged 16-128 μg/mL
- Rabbit IE (cardiac vegetation, kidney or spleen):
 - doses 0.23-0.7 mg/kg were associated with maximum efficacy, MICs in rabbit serum 0.5-1 μ g/mL
- Rabbit reached maximum reduction in CFU of 2.3-logs at AUC/MIC ratio = 0.10
- Mouse reached maximum reduction in CFU of 1.2-logs at AUC/MIC ratio = 0.32
- Efficacious doses in humans should be targeted to achieve a minimum target of AUC/MIC ratio > 0.5
- Given the complexity S. aureus BSIs in humans (e.g. metastatic foci in bone, lung, etc.) AUC/MIC ratios well above 0.5 (e.g., 2-10 fold higher) are possible targets to ensure most/all patients achieve efficacious exposures

14

CONCLUSIONS

- A population PK model developed that can predict PK profiles of individual animals accurately
- Exebacase MICs in serum and absolute exposures required to achieve maximal efficacy are vastly different in mouse and rabbit
- Efficacy was established in mouse (NMTI) and rabbits cardiac vegetation, kidney and spleen consistently
- AUC/MIC ratio provides an adequate index for target efficacy exposures regardless of species
- An AUC/MIC ratio of about >0.5 (e.g., 2-10 fold higher) is appropriate target for efficacious dose in humans

ACNOWLEDGEMENTS – Investigators and Contributors

Hartford Hosp.,	LA Biomed/UCLA Sch. of Med	ContraFect Corp.	Inncelerex
D. Nicolau T. Asempa K. Abdelraouf	Bayer W. Abdel Hady Y. Xiong ³ ,	C. Cassino T. Carabeo R. Schuch D. Lehoux	J. Chiu T. Khariton

RESULTS - Population PK: pcVPC

