

ContraFect

Bacteriophage-Derived Lysins Exert a Potent Bactericidal Effect Against *Pseudomonas aeruginosa*

Antimicrobial Peptides Gordon Research Conference

February 24 - March 1, 2019

Raymond Schuch, Ph.D. VP of Research ContraFect Corporation Yonkers, NY

Forward Looking Statements

This presentation contains, and our officers and representatives may from time to time make, "forward-looking statements" within the meaning of the U.S. federal securities laws. Forward-looking statements can be identified by words such as "projects," "may," "will," "could," "would," "should," "believe," "expect," "target", "anticipate," "estimate," "intend," "plan," "proposed", "potential" or similar references to future periods. Examples of forwardlooking statements in this presentation include statements made regarding ContraFect Corporation's ("ContraFect") therapeutic product candidates, including their ability to treat life-threatening, drug resistant infections, ContraFect's lysin platform, CF-301 properties and activity, timing of the commencement or completion of clinical trials, statements regarding biofilms, anti-biofilm activity, and CF-301 in vitro and in vivo study results. Forwardlooking statements are statements that are not historical facts, nor assurances of future performance. Instead, they are based on ContraFect's current beliefs, expectations and assumptions regarding the future of its business, future plans, proposals, strategies, projections, anticipated events and trends, the economy and other future conditions. Because forward-looking statements relate to the future, they are subject to inherent risks, uncertainties and changes in circumstances that are difficult to predict and many of which are beyond ContraFect's control, including those detailed in ContraFect's filings with the Securities and Exchange Commission. Actual results may differ from those set forth in the forward-looking statements. Important factors that could cause actual results to differ include, among others, the occurrence of any adverse events related to the discovery, development and commercialization of ContraFect's product candidates such as unfavorable clinical trial results, the lack of regulatory approval, or the unsuccessful attainment of patent protection. Any forward-looking statement made by ContraFect in this presentation is based only on information currently available and speaks only as of the date on which it is made. No representation or warranty is made as to the completeness or accuracy of the information provided in this presentation. Except as required by applicable law, ContraFect expressly disclaims any obligations to publicly update any forward-looking statements, whether written or oral, that may be made from time to time, whether as a result of new information, future developments or otherwise. Audiences are cautioned that forward-looking statements or similar information are not guarantees of future performance and, accordingly, are expressly cautioned not to put undue reliance on forward-looking statements or similar information due to the inherent uncertainty therein.

Background on ContraFect

ContraFect is a clinical-stage biotech developing differentiated, first-in-class biologics for the treatment of life-threatening and drug-resistant infections

Lysin platform: novel class of anti-infectives

- Preclinical data supports multiple advantages as therapeutics
- Proprietary research at ContraFect and collaborative research at Rockefeller University
- Portfolio of lysins targeting Gram-positive and Gram-negative bacterial pathogens

Lead program: Exebacase for treatment of *S. aureus* bacteremia and endocarditis

- Phase 1 complete No clinical adverse safety signals observed
- Phase 2 ongoing Positive Topline Phase 2 results were reported JAN2019, with higher clinical responder rates with CF-301 on top of SOC antibiotics vs SOC antibiotics alone
- Established Proof-of-Concept for lysins as human therapeutics

Broad pipeline of new agents

- Second generation antistaphylococcal lysin
- Novel lysins targeting the Gram-negative (GN) pathogen *Pseudomonas aeruginosa*
- Novel phage-derived lytic agents targeting a broad range of GN pathogens (ESKAPE)

Lysins: Potential Alternatives to Conventional Antibiotics

Bacteriophage-derived, recombinantly-produced therapeutic proteins (cell wall hydrolase enzymes)

- Novel MOAs: peptidoglycan hydrolysis, osmotic lysis
- Rapidly bactericidal
- Potent ability to eradicate biofilms
- Targeted, species-specific killing
- Low propensity for resistance
- No antibiotic cross-resistance
- Synergy with standard-of-care (SOC) antibiotics
- Suppresses antibiotic resistance
- Extended post-antibiotic effect

Gram-negative (GN) lysin program (CARB-X funded)

- Discovery-stage program: engineering lysins to bypass the outer membrane and enable potent activity in human blood matrices
- Target indication: Cystic Fibrosis Pulmonary exacerbations; HABP/VABP caused by *P. aeruginosa*
- Potential to improve clinical cure rates for resistant GN infections
- Patents filed for all GN lysin candidates

Challenges to developing Gram-negative (GN) lysins

Identify and characterize native or engineered lysins active in human blood matrices and suitable for study in vitro activity and in vivo efficacy

Lysin identification

Primary Screens

Over 500 phage lysins were identified in a bioinformatic analysis, cloned in *E. coli* and screened for bactericidal activity vs carbapenam-resistant *P. aeruginosa* isolate and lab strain

Identify lysins with intrinsic activity

Secondary Screens

Engineer strategic protein sequence modifications and screen for activity using a modified agar overlay method in which the overlay is supplemented with human serum.

Purify by column chromatorgraphy

GN Lysins Exhibit Potent In Vitro Activities

Activity in human serum (MIC assay) Lysin* Type CAA/HuS CAA/HuS GN3 Native > [GN37 Native >128 GN4 GN1 GN9 GN1 GN1 GN1 GN8

GN4 family

GN4	Native	64	16	fam	GN121	Modified	0.5	0.5				
GN147	Modified	16	4	3	GN94	Modified	16	2				
GN92	Modified	32	4	6	GN218	Modified	8	1				
GN146	Modified	2	2		GN11	Native	32	128				
GN156	Modified	4	2		GN13	Native	8	>128				
GN178	Modified	8	1		GN75	Modified	8	8				
GN83	Modified	>128	>128		GN14	Native	>128	32				
GN122	Modified	2	2		GN93	Modified	128	8				
GN76	Native	64	8		GN328	Native	8	2				
GN123	Native	8	4		GN7	Native	>128	128				
GN126	Modified	2	128		GN316	Native	16	<0.0625				
T4LYZ	Native	>128	>128		GN10	Native	16	8				
Blue = na purple st	ative lysins se naded modifi	erving as t ed lysins	emplates for	P	urple = mo haded lysir	odified lysins ns	derived f	rom blue				

• Engineered lysins have low MIC (0.5-4 µg/mL) values in serum

Synergy with antibiotics (Checkerboard assay)

A	GN37	GN76	GN108	GN4	GN92	GN121	GN147	GN150		
Antibiotic	LYSIN	LYSIN	LYSIN	LYSIN	Modified	Modified	Modified	LYSIN		
Amikacin	0.125	0.281	0.156	0.531	0.375	0.375	0.375	0.313		
Azithromycin	0.188	0.156	0.060	0.094	0.063	0.188	0.250	0.125		
Aztreonam	0.531	0.281	0.250	0.156	0.188	0.625	0.188	0.188		
Ciprofloxacin	0.281	0.281	0.281	0.250	0.281	0.313	0.281	0.250		
Colistin	0.156	0.250	0.133	0.156	0.094	0.375	0.188	0.094		
Fosfomycin	0.313	0.125	0.188	0.250	0.5	0.375	0.250	0.375		
Gentamicin	0.313	0.313	0.188	0.375	0.375	0.375	0.375	0.375		
Imipenem	0.313	0.254	0.039	0.125	0.125	0.500	0.375	0.375		
Piperacillin	0.375	0.375	0.531	0.313	0.5	0.375	0.188	0.500		
Rifampicin	0.281	0.281	0.125	0.156	0.094	0.313	0.281	0.094		
Tobramycin	0.156	0.281	0.188	0.375	0.500	0.188	0.500	0.500		
Synergy	Strongly /	Additive	Broadly synergistic with many antibiotics							

Potent antibiofilm activity (MBEC assay)

	Lysin	Туре	MBEC (µg/mL)		Lysin	Туре	MBEC (µg/mL)	
	GN3	Native	0.25		GN17	Native	0.125	
	GN4	Native	1		GN76	Native	0.125	
line	GN147	Modified	0.25		GN123	Native	4	
437 family GN4 fa	GN92	Modified	0.5		GN126	Modified	0.125	
	GN146	Modified	2		GN83	Modified	1	
	GN156	Modified	0.5		GN94	Modified	2	
	GN37	Native	0.25		GN80	Native	0.125	
	GN121	Modified	0.25		GN93	Modified	0.125	
<u>נ</u>	GN150	Native	0.25 0.125		GN105	Native	4	
	GN13	Native			GN108	Native	0.125	
	GN9	Native	0.125		GN122	Native	1	
	GN10	Native	0.5	0.5		Native	>64	

• MBEC values are below MICs for many GN lysins

Non-hemolytic against hRBCs (Hemolysis assay)

	Lysin	Туре	MHC (µg/mL)	Lysin	Туре	MHC (µg/mL)		Control AMPs	М (µg,			
[GN3	Native	>128	GN17	Native	>128		RR12	;			
.≥	GN4	Native	>128	GN76	Native	>128		RR12polar				
l a	GN147	Modified	>128	GN123	Native	>128		DD12bydro	-			
ξĺ	GN92	Modified	>128	GN126	Modified	>128		KRIZIIYUIU	3			
۵	GN146	Modified	>128	GN83	Modified	>128						
≥∣	GN156	Modified	>128	GN94	Modified	>128						
j aj	GN37	Native	>128	GN75	Modified	>128		 GN lysins exhibit no hemolytic activity 				
۲ <u>۲</u>	GN121	Modified	>128	GN7	Native	>128						
2g	GN150	Native	>128	GN11	Native	>128						
	GN13	Native	>128	GN14	Native	>128						
	GN9	Native	>128	GN54	Modified	>128						
	GN10	Native	>128									

GN Lysins Exhibit Potent In Vitro Activities

Bactericidal (Time-kill assay)										
HEPES CAA/HuS										
(Log	g ₁₀ CFU/	′mL)		(Log ₁₀ CFU/mL)						
GN	1hr	3hr	Ι Γ	GN	1hr	3hr				
3	<3.7	<3.7		3	5.8	<3.7				
147	<3.7	<3.7		147	6.5	4.2				
4	5.7	<3.7		4	6.0	<3.7				
92	5.7	<3.7		92	6.2	<3.7				
146	6.7	<3.7		146	5.9	4.0				
156	5.7	<3.7		156	5.7	<3.7				
83	<3.7	<3.7		83	5.7	<3.7				
37	6.3	<3.7		37	6.2	<3.7				
94	6.0	<3.7		94	6.4	<3.7				
121	<3.7	<3.7		121	7.4	<3.7				
150	5.7	<3.7		150	6.0	<3.7				
13	6.7	<3.7		13	6.0	6.0				
75	5.7	<3.7		75	5.9	<3.7				
65	5.7	<3.7		65	6.0	<3.7				
126	<3.7	<3.7		126	6.6	<3.7				
7	7.5	6.2		7	7.0	7.0				
9	6.7	5.7		9	5.6	<3.7				
10	5.7	<3.7		10	6.1	<3.7				
11	6.7	<3.7		11	6.7	7.0				
14	<3.7	<3.7		14	5.7	<3.7				
17	5.4	<3.7		17	6.4	4.2				
40	7.0	5.7		40	6.6	6.7				
43	6.4	<3.7		43	6.9	7.0				
76	<3.7	<3.7		76	5.7	<3.7				
80	7.7	6.7		80	6.7	7.0				
93	6.0	<3.7		93	6.6	<3.7				
105	6.6	<3.7		105	7.0	6.3				
108	6.4	<3.7		108	5.7	<3.7				
122	7.7	5.4		122	6.7	6.7				
123	5.6	<3.7		123	6.7	<3.7				
81	7.4	6.5		81	6.7	7.0				
BLANK	7.7	7.2		BLANK	7.7	7.2				

At a concentration of 10 μ g/mL, many lysins exhibited decreases of ≥3-log10 CFU/mL. Buffer treated control ("blank") is indicated at the bottom (orange cells).

GN Lysins Kill Rapidly in 100% Human Serum

15 min treatment with buffer or lysin (10 µg/mL), LIVE/DEAD[™] stained, and visualized by DIC and fluorescence microscopy (2000x mag)

Summary of GN lysin activities

Click on the picture below View the rapid bacteriolytic effect in human serum on our website

- A screening and optimization strategy was developed to identify GN lysins with potent antimicrobial activity against *P. aeruginosa* in context of human serum
- The GN lysins identified here exhibit notable characteristics:
 - Rapid and potent bactericidal activity
 - Synergy with a range of antibiotics
 - Resensitization of antibiotic resistant strains
 - Ability to eradicate biofilm
 - Non-hemolytic
- The ability to engineer lysins to achieve activity in serum demonstrates that it is possible to develop lysins with potent activity against GN pathogens
- GN lysins represent a potential new therapeutic class of bactericidal agents to combat resistant GN pathogens through a unique mechanism of action

Acknowledgments

ContraFect Corporation

- Cara Cassino, M.D., Chief Medical Officer and EVP of Research and Development
- Steve Gilman, Ph.D., Chief Executive Officer
- Karen Sauve, B.S., Research Scientist
- Jun Oh, Ph.D., Research Associate
- Aubrey Watson, M.S., Research Associate
- Chiara Indiani, Ph.D., Principal Scientist
- Joe Mozdzierz, B.S., Research Associate
- Dario LeHoux, Ph.D., Head of Pharmacology

CARB-X

Xccelerating global antibacterial innovation

