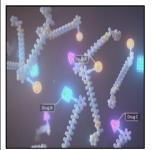

Precision Radiotherapy for Incurable Brain Tumors: Phase 1b Dose & Regimen Optimization Study of Iopofosine I 131 in Inoperable Relapsed or Refractory Pediatric High-Grade Glioma, Interim Data Assessment

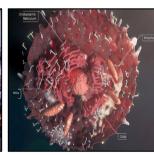
Authors: Sameer Farouk Sait, | Jennifer H. Foster, Daniel A. Morgenstern, Scott Raskin, Laura Klesse, Julia Glade-Bender, Kate Oliver, Jarrod Longcor, Nicholas Pytel


Memorial Sloan Kettering Cancer Center, New York, NY, USA¹; American Family Children's Hospital, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA, Hospital for Sick Children and University of Toronto, Toronto, Ontario, CA4; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA, University of Texas Southwestern, Dallas, TX, USA, Cellectar Biosciences, Florham Park, NJ, USA, USA, Cellectar Biosciences, Florham Park, NJ, USA, Cellectar Bioscien

Introduction

- Pediatric high-grade gliomas (HGG) represent about 8-12% of all pediatric brain tumors, demonstrate molecular heterogeneity, and are associated with a poor prognosis (5 year
- Iopofosine I 131 is a novel radiopharmaceutical composed of a lipid raft-targeting phospholipid ether covalently bound to ¹³I, a beta-emitting radioisotope resulting in a phospholipid drug conjugate
- Designed to provide targeted delivery of iodoine-131 directly to cancer cells, while limiting exposure to healthy cells
- Crosses the blood-brain barrier³
- Has shown antitumor activity in murine models of neuroblastoma⁴
- Iopofosine I 131 is currently being assessed in the CLOVER-2 study (NCT05610891) evaluating its activity in children, adolescents, and young adults with relapsed, refractory, recurrent HGGs and
- The CLOVER-2 study enrolled patients with solid tumors, lymphomas, and brain tumors; this poster focuses on those enrolled with brain tumors.

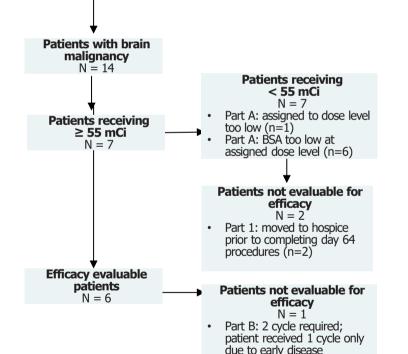
Figure 1:PDC Mechanism of Action


Universal Targeting With Diverse Payloads

(1) PDC containing desired payload with tumor-targeting phospholipid ether

(2) Specific targeting of lipid raft on cancer cell membrane

(3) Intercellular delivery of payload by transmembrane flipping of lipid raft


Study Summary

- The primary objective of Part A of this study was to determine the safety and tolerability of iopofosine I 131 in children, adolescents, and young adults with relapsed or refractory malignant solid tumors and lymphoma and recurrent or refractory malignant brain tumors
- Patient received either a single dose (15-30 mCi/m²) on Day 1 or a fractionated dose (total dose 45-75 mCi/m²) on Day 1 and 15 in a 12-week cycle. Additional cycles allowed at investigator discretion.
- Part B is an expansion cohort, and the primary objective of Part B of this study is to determine the safety, tolerability, and preliminary efficacy based on progression-free survival (PFS) of iopofosine I 131 in children, adolescents, and young adults with relapsed or refractory malignant HGG and ependymoma (Figure 2)
- Part B aims to assess two dosing regimens in parallel with patients enrolled 1:1 into two
- Arm 1: Iopofosine I 131 administered as 40 mCi/m² per cycle fractionated into two 20 mCi/m² doses 14 days apart (± 1 Day) in two planned cycles, with an optional third cycle. Cycles are defined as two doses 14 days apart (± 1 Day). Cycle 2 will be given 8 weeks (± 4 Days) post initial infusion
- Arm 2: Iopofosine I 131 administered as 20 mCi/m² per cycle fractionated into two 10 mCi/m² doses 14 days apart (± 1 Day). Cycles are defined as two doses 14 days apart (± 1 Day). Cycle 2 will be given 8 weeks (± 4 Days) post initial infusion. The third cycle will be initiated 8 weeks (± 4 days) post Cycle 2 Day 1

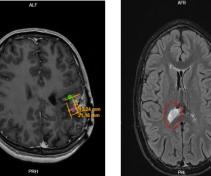
1. Funakoshi Y, Hata N, Kuga D, et al. Pediatric Glioma: An Update of Diagnosis, Biology, and Treatment. C*ancers* (Basel) 2021;13(4):758. 2. Hall CP, Cronk JC, Rubens JA. STINGing the immune system: lessons learned through a model of G34-mutant pediatric high-grade glioma. J Clin Invest. 2022;132(22):e164420

Figure 2: CLOVER-2 Part B Study Design Arm 1: Infusion for 2 Required cycles: **DMC** assessment dose to 40 mCI/m² 30 minutes on 15mCi/m² optional 3rd cycle after 10 patients per cycle Day 1and Day 15 fractionated Tolerability (≥10 pts) Subsequent cycle given no earlier than 8 weeks (±4 days) post Cycle 2 Day 1 Overall survival Part F Subsequent cycle given Duration of response no earlier than 8 weeks (±4 days) post Cycle 3 Day 1 Duration of clinical benefit Arm 2: Recommended phase 2 dosing 20 mCI/m² Infusion for **DMC** assessment per cycle 3 Required cycles; 30 minutes on Antitumor and therapeutic activity after 10 patients fractionated 15mCi/m² optional 4th cycle Day 1and Day 15 (≥10 pts) Arm 1 is deeme DMC, Data Monitoring Committee.

Figure 3: Patient Disposition Characteristic **DCL-17-00 Enrollment** N = 27

Table 1: Demographics

	with brain malignancy (n=14)	< 55 mCi TAD iopofosine I 131 (n=7)	≥ 55 mCi TAD iopofosine I 131 (N=7)
Diagnosis DHG DIPG DMG Ependymoma GBM Medulloblastoma	1 4 1 6 1	0 3 0 2 1 1	1 1 1 4 0
Gender M F	9 5	5 2	4 3
Median age (range) [years]	13 (5-25)	12 (5-14)	14 (11-25)
Mean prior interventions	4.4	4.7	4.1
Efficacy-evaluable Part A ¹ Part B ²	8 3	5 0	3 3


Abbreviations: DHG: diffuse hemispheric glioma; DIPG: diffuse intrinsic pontine glioma; DMG: diffuse midline glioma; GBM: glioblastoma multiforme; TAD: total administered dose

- 1. Part A patients evaluable for efficacy if completed day 64 procedures following treatment
- 2. Part B patients evaluable for efficacy if completed 2 cycle of iopofosine I 131

All patients

Figure 5: Ependymoma patient Figure 4: DHG patient

progression

One pt with DHG (Figure 4) experienced an initial 35% reduction in target lesions and a continued reduction to 50% at 8 months post-treatment representing a partial response but a new lesion was noted at the same time. A second pt with ependymoma (Figure 5) experienced a 31% reduction in the target lesion.

Table 2: Results

Table 2: Efficacy Results (evaluable patients)	< 55 mCi TAD iopofosine I 131 (n=5)	≥ 55 mCi TAD iopofosine I 131 (N=6)	Part B ≥ 55 mCi TAD iopofosine I 133 (N=3)
RAPNO Response Minor response; n (%) Stable disease; n (%)	0 1 (20.0)	2 (33.3) 6 (100)	2 (66.7) 1 (33.3)
Mean duration of clinical benefit ¹ (range) [months]	1.6 (0.9 – 2.8)	5.4 (1.9 – 11.0)	7.9 (1.9 – 11.0)
Mean progression free survival (range) ² [months]	1.8 (1.2 – 2.8)	5.9 (2.1 – 11.2)	8.1 (2.1 – 11.2)
Mean overall survival (range) [months]	6.1 (3.2 – 7.7)	10.7 (6.2– 18.1)	Ongoing ³

- 1. Duration of clinical benefit = time from first iopofosine I 131 dose to progressive disease or death
- 2. Progression free survival = time from arm assignment to progressive disease or death
- 3. Median follow up is 11.5 month (range 4.9 14.9 months)

Table 3: Treatment Related Adverse Events

Tubic 51 Treatment Related Navel 50 Events						
Most common related TEAE (> 10% patients), n (%)	Any Grade (n=14)	Grade 3 (n=14)	Grade 4 (n=14)			
Hematologic Toxicities						
Anemia	9 (64)	6 (43)	1 (7)			
Febrile neutropenia	3 (21)	2 (14)	1 (7)			
Lymphocyte count decreased	3 (21)	1 (7)	1 (7)			
Neutropenia	9 (64)	1 (7)	8 (57)			
Thrombocytopenia	11 (79)	2 (14)	8 (57)			
White blood cell count decreased	9 (64)	1 (7)	8 (57)			
Non-Hematologic Toxicities						
Constipation	2 (14)	0	0			
Fatigue	5 (36)	0	0			
Headache	3 (21)	0	0			
Infusion-related reaction	2 (14)	0	0			
Nausea	5 (36)	0	0			
Rhinorrhea	2 (14)	1 (7)	0			
Sepsis	2 (14)	2 (14)	0			
Vomiting	4 (29)	0	0			
Weight decreased	2 (14)	0	0			
·	·		· ·			

The safety profile was consistent with selective targeting of tumor sites with clinically negligible offtarget effect outside the hematologic system. The most common treatment emergent adverse events (AE) are: thrombocytopenia (79%), anemia (64%), neutropenia (64%), and white blood cell count decreased (64%). The hematologic AEs are similar to those seen in other pts treated with iopofosine I 131 and are considered predictable and manageable.

Conclusions

- Less than 5% of infused activity accumulating in non-tumor tissue
- Heme AEs were considered predictable and manageable and consistent with previously observed AEs
- TADs of < 55 mCi and >55 mCi show clear dose response
- o Dosing regimen may need to be refined to provide higher TAD to achieve greater responses
- · Preliminary data with iopofosine I 131 shows activity and warrants further investigation