
Zhao et al. 
Acta Neuropathologica Communications          (2023) 11:200  
https://doi.org/10.1186/s40478-023-01705-8

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Acta Neuropathologica
Communications

Targeting RACK1 to alleviate TDP-43 and FUS 
proteinopathy-mediated suppression of protein 
translation and neurodegeneration
Beibei Zhao1,3, Catherine M. Cowan1, Juliane A. Coutts1, Darren D. Christy1, Ananya Saraph1, 
Shawn C. C. Hsueh2, Stephen S. Plotkin2, Ian R. Mackenzie1, Johanne M. Kaplan3 and Neil R. Cashman1,3*   

Abstract 

TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma/Translocated in Sarcoma (FUS) are ribonucleoproteins 
associated with pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). 
Under physiological conditions, TDP-43 and FUS are predominantly localized in the nucleus, where they partici-
pate in transcriptional regulation, RNA splicing and metabolism. In disease, however, they are typically mislocalized 
to the cytoplasm where they form aggregated inclusions. A number of shared cellular pathways have been identified 
that contribute to TDP-43 and FUS toxicity in neurodegeneration. In the present study, we report a novel pathogenic 
mechanism shared by these two proteins. We found that pathological FUS co-aggregates with a ribosomal protein, 
the Receptor for Activated C-Kinase 1 (RACK1), in the cytoplasm of spinal cord motor neurons of ALS, as previously 
reported for pathological TDP-43. In HEK293T cells transiently transfected with TDP-43 or FUS mutant lacking a func-
tional nuclear localization signal (NLS; TDP-43ΔNLS and  FUSΔNLS), cytoplasmic TDP-43 and FUS induced co-aggrega-
tion with endogenous RACK1. These co-aggregates sequestered the translational machinery through interaction 
with the polyribosome, accompanied by a significant reduction of global protein translation. RACK1 knockdown 
decreased cytoplasmic aggregation of TDP-43ΔNLS or  FUSΔNLS and alleviated associated global translational sup-
pression. Surprisingly, RACK1 knockdown also led to partial nuclear localization of TDP-43ΔNLS and  FUSΔNLS in some 
transfected cells, despite the absence of NLS. In vivo, RACK1 knockdown alleviated retinal neuronal degeneration 
in transgenic Drosophila melanogaster expressing hTDP-43WT or hTDP-43Q331K and improved motor function of hTDP-
43WT flies, with no observed adverse effects on neuronal health in control knockdown flies. In conclusion, our results 
revealed a novel shared mechanism of pathogenesis for misfolded aggregates of TDP-43 and FUS mediated by inter-
ference with protein translation in a RACK1-dependent manner. We provide proof-of-concept evidence for targeting 
RACK1 as a potential therapeutic approach for TDP-43 or FUS proteinopathy associated with ALS and FTLD.

Introduction
The Receptor for Activated C-Kinase 1 (RACK1) is a 
member of the tryptophan, aspartic acid repeat (WD-
repeat) protein family. It was first identified as a receptor 
for protein kinase C (PKC) βII to activate the transla-
tional activity of Eukaryotic Translation Initiation Fac-
tor 6 (eIF6), and regulates a variety of cellular events, 
such as cell growth, motility, differentiation, microRNA 
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biogenesis and function, and protein synthesis [7, 8, 10, 
21, 25, 33, 41, 42, 61, 66].

Similar to many other WD-repeat proteins, RACK1 is 
highly conserved throughout evolution from prokary-
otes to eukaryotes [70], and adopts a seven-bladed 
β-propeller structure as confirmed by X-ray crystallog-
raphy studies [13]. Also as with other WD-repeat pro-
teins, RACK1 itself lacks catalytic enzymatic activities, 
but plays a crucial role in scaffolding numerous proteins, 
such as kinases, transmembrane receptors, ion chan-
nels, and ribosomal proteins that are involved in a wide 
range of cellular functions [1]. As such, RACK1 serves as 
a hub connecting a complex network of cellular signaling 
events.

To date, at least 80 proteins have been identified to 
interact with RACK1 [1], including the RACK1-ribosome 
association, which has drawn intense research interest in 
the past two decades since first identified by mass spec-
trometry [60]. It is now established that RACK1 is a key 
constituent of the eukaryotic small (40S) subunit of the 
ribosome and is located in the vicinity of the mRNA exit 
channel [60]. Association of RACK1 with the ribosome 
plays a crucial role in cap-dependent translation and the 
downstream signaling events involved [20, 45].

Given the diverse roles of RACK1 in cellular function 
mentioned above, it is not surprising that RACK1 has 
been implicated in many human diseases, such as cancer, 
developmental disorders, addiction, and cardiovascu-
lar diseases [1]. However, little is known about the role 
of RACK1 in the pathogenesis of neurodegenerative dis-
orders, such as amyotrophic lateral sclerosis (ALS) and 
frontotemporal dementia (FTD).

ALS is the most common motor neuron disease char-
acterized by the ultimately fatal progressive degeneration 
of motor neurons in the spinal cord and motor cortex of 
the brain, which leads to paralysis of muscles that con-
trol limb movement, speech, swallowing, and breathing. 
While only ~ 10% of ALS is familial and associated with 
various genetic mutations (fALS), the remaining ~ 90% 
is sporadic (sALS). Frontotemporal lobar degeneration 
(FTLD), a pathological process occurring in clinical syn-
drome FTD, is characterized by neuronal degeneration 
in the frontal and temporal lobes of the brain. The most 
common clinical presentations include abnormal behav-
ior, language disorders, and disorders of movement. ALS 
and FTD are considered to belong to a common disease 
spectrum (ALS–FTD) because of overlaps in genetic, 
clinical symptoms, and pathologies [12], and ~ 20% of 
ALS patients fall into the ALS–FTD spectrum based on 
clinical criteria [47, 49, 56].

Among the pathological similarities between ALS and 
FTLD, one major hallmark is the accumulation of cyto-
plasmic inclusions of TAR DNA-binding protein 43 

(TDP-43) or Fused in Sarcoma/Translocated in Sarcoma 
(FUS/TLS), which are both ubiquitously expressed in 
most cell types and tissues. TDP-43 proteinopathy occurs 
in 60–70% of fALS and 90–95% of sALS, whereas TDP-
43 pathology is observed in 50% of FTD. FUS pathol-
ogy accounts for 10% of fALS and 10% of FTD [38, 46]. 
FUS inclusions are associated only with mutations in 
ALS and wild-type FUS in a small percentage of FTLD 
with neuronal inclusions composed of an unidentified 
ubiquitinated protein (atypical FTLD-U; aFTLD-U) [43]. 
TDP-43 and FUS proteins share many similarities in their 
cellular functions, protein structures, and subcellular dis-
tribution. TDP-43 and FUS are both RNA-binding pro-
teins that play a pivotal role in multiple aspects of RNA 
processing, such as alternative splicing, metabolism, 
transport, and transcriptional and translational regula-
tion [29, 46, 55]. Structurally, TDP-43 and FUS are both 
heterogeneous nuclear ribonucleoproteins (hnRNPs) that 
possess RNA-recognition motifs (RRMs), glycine-rich 
domains, a prion-like low complexity domain (PrLCD), 
and a nuclear localization signal (NLS) [19, 36]. Under 
physiological conditions, TDP-43 and FUS shuttle 
between the nucleus and cytoplasm, with ~ 90% being 
localized to the nucleus at any given time [29, 46, 55]. 
Under pathological conditions, such as ALS and FTLD, 
TDP-43 or FUS can be depleted from the nucleus and 
mislocalized to the cytoplasm where they can form inclu-
sions in affected neurons and glial cells.

To date, a number of mechanistic pathways have been 
identified to explain the pathogenic activities of TDP-
43 and FUS in ALS and FTLD, including disruption of 
mitochondrial function, disturbance of proteostasis, 
pro-inflammatory responses, and oxidative stress [55]. 
Importantly, a recent study has reported that RACK1 co-
aggregates with cytoplasmically mislocalized TDP-43 in 
both a transfected cell line and ALS spinal cord motor 
neurons [57]. In addition, this study shows that TDP-
43 cytoplasmic aggregates significantly suppress global 
translation, a process that requires the association of 
TDP-43 with ribosome-bound RACK1 [57], suggesting 
a novel pathogenic mechanism underlying TDP-43-as-
sociated neurodegeneration through RACK1-mediated 
global translational suppression.

Considering the many similarities between TDP-43 
and FUS, in the present study we sought to: (1) investi-
gate whether TDP-43 and FUS may utilize a similar path-
ogenic pathway through co-aggregation with RACK1 
and suppression of global translation; (2) better under-
stand the molecular mechanism by which interaction 
of RACK1 with pathological TDP-43 or FUS alters the 
homeostasis of global translation; (3) explore an RNAi-
based approach targeting RACK1 that could potentially 
ameliorate the adverse effects of pathogenic TDP-43 and 
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FUS on cellular function and neurodegeneration in vitro 
and in vivo.

Results
Pathological TDP‑43 and FUS co‑aggregate with RACK1 
in the cytoplasm of spinal cord motor neurons of ALS
Using post-mortem human tissues, it has been shown 
that TDP-43 co-aggregates with RACK1 in the cytoplasm 
of spinal cord motor neurons from ALS spinal cords [57], 
a finding that we have confirmed (Additional file 1: Fig. 
S1). This led us to test whether pathological FUS may also 
co-aggregate with RACK1 in situ. Immunohistochemical 
analysis was performed on spinal cord sections from a 
fALS-FUS case carrying a R521C mutation. As shown in 
Fig. 1, in contrast to normal control spinal cords, where 
FUS and RACK1 were predominantly localized in the 
nucleus and cytoplasm, respectively, pathological FUS 
co-aggregated with RACK1 in the cytoplasm, similar to 
what was observed with TDP-43 [57].

Cytoplasmic aggregates of nuclear localization 
signal‑deficient mutants of TDP‑43 and FUS are associated 
with RACK1 co‑aggregation in HEK293T cells
To confirm and extend a previous finding that cyto-
plasmic TDP-43 co-aggregates with RACK1 in the 
neuroblastoma cell line SH-SY5Y [57], we transiently 
transfected HEK293T cells with HA-tagged wild-type 
(WT) TDP-43 or a nuclear localization signal (NLS)-
deficient mutant of TDP-43, TDP-43ΔNLS. As shown 
in Fig. 2a, in WT TDP-43 over-expressing cells, where 
HA-WT TDP-43 was almost exclusively localized in the 
nucleus, endogenous RACK1 was diffusely expressed 
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Fig. 1 Immunohistochemical analysis shows co-aggregation 
of RACK1 with FUS in the cytoplasm (arrows) in spinal cord sections 
of a fALS-FUS-R521C case, in contrast to normal nuclear expression 
of FUS in control (Ctrl). Nuclei stained with DAPI in merged 
images. Scale bar: 10 μm
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Fig. 2 Immunocytochemical analysis demonstrates expression of HA-tagged TDP-43ΔNLS (a, bottom row) or  FUSΔNLS mutants, R495x- and P525L-FUS 
(b, middle & bottom rows), but not WT TDP-43 (a, top row) or WT-FUS (b, top row), which are primarily localized to the nucleus, is associated 
with co-aggregation of endogenous RACK1 in HEK293T cells. Nuclei stained with DAPI in merged images. Scale bars: 20 μm
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in the cytoplasm. In contrast, expression of the engi-
neered mutant TDP-43ΔNLS, which aggregates in the 
cytoplasm, apparently induced RACK1 co-aggregation 
in the cytoplasm of HEK293T cells, consistent with the 
report in SH-SY5Y cells [57]. Similar experiments were 
performed using two variants of HA-tagged mutants 
of FUS that aggregate in the cytoplasm: natural fALS 
mutations R495x- and P525L-FUS, collectively referred 
to as  FUSΔNLS herein. While RACK1 was diffusely 
expressed in the cytoplasm of WT FUS over-express-
ing cells, both  FUSΔNLS mutants were associated with 
RACK1 co-aggregation in the cytoplasm (Fig.  2b). In 
contrast, expression of a ribosome binding deficient 
mutant of RACK1, R36D/K38E-RACK1 (DE-RACK1) 
[13], which forms large aggregates in both the cyto-
plasm and the nucleus, did not alter the normal nuclear 
distribution of endogenous TDP-43 and FUS (Addi-
tional file  1: Fig. S2), suggesting that it is TDP-43ΔNLS 
and  FUSΔNLS that played an initiating role in the for-
mation of RACK1 co-aggregates and not the reverse. 
Transfection of HEK293T cells with a mutant disrupted 
in schizophrenia 1 (DISC1) with all tryptophan resi-
dues mutated to serines, 10W/S-DISC1, which forms 
large aggregates in the cytoplasm, displayed minimal 
co-aggregation with RACK1 (Additional file  1: Fig. 

S3), indicating that RACK1 aggregation is unlikely 
to be a generic consequence of cytoplasmic protein 
aggregation.

RACK1 is misfolded when co‑aggregated with pathological 
TDP‑43 and FUS
Using a computational modeling method we have devel-
oped, “Collective Coordinates” [48], we generated a 
rabbit monoclonal antibody, “RACK1mis”, against a mis-
folding-specific conformational epitope of RACK1. As 
shown in Fig.  3,  RACK1mis did not react with normal 
cytoplasmic RACK1 in un-transfected cells but specifi-
cally reacted with the species of RACK1 present in TDP-
43ΔNLS or  FUSΔNLS co-aggregates, indicating that RACK1 
is misfolded when co-aggregated with pathological 
TDP-43 or FUS. Furthermore, reactivity with misfolded 
RACK1 was also observed in post-mortem FTLD-TDP 
brain and sALS spinal cord tissue, but not in normal con-
trols (Additional file 1: Fig. S4).

Aggregates of TDP‑43ΔNLS and  FUSΔNLS mutants suppress 
global translation
A body of evidence has suggested a role for RACK1 in 
translational regulation in either a ribosome-bound or 
a ribosome-free form [1, 45]. In particular, TDP-43ΔNLS 
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Fig. 3 Immunocytochemical analysis demonstrates reactivity of RACK1 misfolding specific antibody “RACK1mis” with RACK1 in cytoplasmic 
aggregates of HA-tagged TDP-43ΔNLS (middle row) or R495x-FUS (bottom row) transfected HEK293T cells but not with diffuse, non-aggregated RACK1 
in the cytoplasm (stained by a Pan RACK1 antibody).  RACK1mis shows no reactivity with endogenous, physiological RACK1 in un-transfected (UT, top 
row) cells. Nuclei stained with DAPI in merged images. Scale bars: 10 μm
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has been shown to suppress global translation through 
interaction with ribosome-bound RACK1 in neuroblas-
toma SH-SY5Y cells [57]. The in vitro and in situ results 
described above led us to hypothesize that the activi-
ties of RACK1-associated translational machinery may 
be similarly impaired by TDP-43ΔNLS and  FUSΔNLS in 
HEK293T cells. Utilizing Surface Sensing of Translation 
(SUnSET) (a non-radioactive method utilizing puro-
mycin to tag newly synthesized proteins in live cells) 
[58], followed by western blotting (SUnSET-WB), we 
found that TDP-43ΔNLS did suppress global translation 
in HEK293T cells (Fig.  4a, b). Similarly, both  FUSΔNLS 
mutants also significantly suppressed global translation 
(Fig. 5a, b).

To validate these findings and visualize global transla-
tional changes in individual cells, SUnSET followed by 
immunocytochemistry (SUnSET-ICC) was performed 

in cells transfected with TDP-43ΔNLS or  FUSΔNLS. As 
illustrated in Fig. 4c, TDP-43ΔNLS aggregate-containing 
cells showed undetectable level of puromycin staining, 
in sharp contrast to neighbouring un-transfected (UT) 
HA-negative cells, consistent with strong translational 
suppression by TDP-43ΔNLS aggregates. However, in 
cells where TDP-43ΔNLS displayed a diffuse filamentary 
cytoplasmic expression pattern, translational level was 
comparable to neighbouring UT cells (Fig. 4c), suggest-
ing that global translational suppression is predomi-
nantly caused by consolidated larger size TDP-43ΔNLS/
RACK1 co-aggregates. Similar inhibition of puromycin 
incorporation was observed in  FUSΔNLS aggregate-con-
taining cells (Fig.  5c). Together, these results strongly 
suggest that co-aggregation of RACK1 with TDP-
43ΔNLS or  FUSΔNLS significantly inhibits normal func-
tion of the translational machinery.
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Fig. 4 RACK1 knockdown alleviates aggregation and global translational suppression by TDP-43ΔNLS and WT over-expression in HEK293T cells. 
a Representative SUnSET-Western Blot (WB) demonstrates that compared to control, expression of HA-tagged TDP-43ΔNLS and to a lesser extent 
over-expression of WT TDP-43, induces a significant reduction in puromycin (PMY) incorporation. b RACK1 siRNA KD alleviates global translational 
levels in both cases as determined by quantification of PMY band intensities normalized to loading control β-actin. c SUnSET-ICC shows inhibition 
of PMY incorporation by TDP-43ΔNLS (HA) expression preferably occurs in cells containing distinctive cytoplasmic aggregates (asterisks, top row). 
In cells where TDP-43ΔNLS displays a filamentary expression pattern (arrows, bottom row), PMY incorporation is comparable to neighbouring HA 
negative UT cells. d RACK1 KD alleviates aggregation, resulting in diffuse cytoplasmic expression (top row) or predominantly nuclear localization 
(bottom row) of TDP-43ΔNLS in a sub-population of transfected cells and correlating with normal PMY incorporation compared to neighbouring 
HA-negative UT cells. Nuclei stained with DAPI in merged images. Statistics: Ordinary one-way ANOVA Tukey multiple comparisons. n = 4 *p < 0.05; 
***p < 0.001; ****p < 0.0001. Scale bars: 20 μm
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TDP‑43ΔNLS and  FUSΔNLS/RACK1 co‑aggregates sequester 
the polyribosome to form large aggregated complexes
We next tested whether TDP-43ΔNLS or  FUSΔNLS inhib-
ited global translation in our HEK293T cell system 
through sequestration of the polyribosome into RACK1 
co-aggregates, as has been reported in SH-SY5Y cells 
[57]. Immunocytochemical analysis was performed 
to detect the association of TDP-43ΔNLS or  FUSΔNLS/
RACK1 aggregates with Rps6 and RPL14, two estab-
lished markers for the eukaryotic small (40S) and large 
(60S) ribosomal subunits, respectively. As shown in 
Fig.  6, UT cells displayed the expected pattern of dif-
fuse expression of Rps6 and RPL14 in the cytoplasm. 
In contrast, transfection with either TDP-43ΔNLS or 
 FUSΔNLS resulted in prominent co-localization with 
RACK1 and both Rps6 and RPL14. Together, these 
results demonstrate that TDP-43ΔNLS and  FUSΔNLS 
cytoplasmic aggregates may disrupt normal function of 
the translational machinery through aberrant seques-
tration of RACK1 and associated polyribosome into 
large aggregated complexes.

RACK1 knockdown diminishes TDP‑43ΔNLS and  FUSΔNLS 
cytoplasmic aggregation and leads to nuclear localization 
in a sub‑population of cells
In light of the above results, we considered whether 
RACK1 knockdown (KD) would render a beneficial effect 
on TDP-43ΔNLS or  FUSΔNLS induced RACK1 aggregation. 
To this end, HEK293T cells were treated with human-
specific anti-RACK1 siRNA prior to TDP-43ΔNLS or 
 FUSΔNLS transfections. As shown in Fig.  7a and b, KD 
of endogenous RACK1 significantly reduced the average 
aggregate size of TDP-43ΔNLS. A similar phenomenon 
was observed in  FUSΔNLS transfected cells (Additional 
file 1: Fig. S5).

Surprisingly, RACK1 KD also resulted in partial redis-
tribution of TDP-43ΔNLS from being predominantly 
cytoplasmic to nuclear in a sub-population of trans-
fected cells, despite its lack of nuclear localization signal 
(Figs.  4d, 7a and c). This observation was confirmed by 
biochemical analyses demonstrating a decreased cyto-
plasmic/nuclear ratio of TDP-43ΔNLS (by ~ 42%) upon 
RACK1 KD (Fig.  7d). In addition, RACK1 KD led to a 
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reduction of low molecular weight fragments and phos-
phorylated-TDP-43 in the cytoplasm by ~ 50% and ~ 21%, 
respectively (Fig. 7d), which are both hallmark biochemi-
cal features of TDP-43 pathology in affected CNS regions 
of ALS/FTLD patients [3, 11, 15, 44, 55, 63, 67]. Simi-
lar reversal from predominantly cytoplasmic to nuclear 
localization was observed with  FUSΔNLS upon RACK1 
KD (Fig. 5d, Additional file 1: Fig. S5a). It is notable that 
no detectable changes were observed with the morphol-
ogy or viability of HEK293T cells upon RACK1 KD, and 
that endogenous TDP-43 and FUS retained their normal 
nuclear localization as in control RACK1 expressing cells 
(Additional file 1: Fig. S6).

RACK1 KD restores global translational suppression 
by TDP‑43ΔNLS and  FUSΔNLS

In light of the above results showing that RACK1 
KD reduced cytoplasmic aggregation and increased 
nuclear/cytoplasmic ratio of TDP-43ΔNLS and  FUSΔNLS, 
we hypothesized that RACK1 KD may mitigate 

sequestration of polyribosomes into aggregates and 
thereby alleviate global translational suppression by both 
mutants. Utilizing SUnSET-WB and SUnSET-ICC, we 
showed that global translational suppression by either 
mutant was indeed significantly restored to levels compa-
rable to those of controls by RACK1 KD (Figs. 4, 5).

RACK1 KD inhibits TDP‑43ΔNLS intercellular transmission
A body of evidence has suggested that misfolded/aggre-
gated TDP-43 can be transmitted from cell to cell in a 
prion-like fashion and contributes to the spreading of 
neurodegeneration across CNS regions [9, 11, 18, 24, 
28, 30, 53–55]. We therefore tested whether RACK1 
KD might have an impact on cell-to-cell transmission of 
misfolded TDP-43ΔNLS. We employed a previously estab-
lished procedure [23, 50], in which conditioned medium 
from donor cells expressing TDP-43ΔNLS without or with 
RACK1 KD was added to naïve recipient cells for quan-
titation of transmitted TDP-43ΔNLS (Fig.  8a). Compared 
to control donor cells, RACK1 KD reduced both total 
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Fig. 6 Immunocytochemical analysis shows co-aggregation of HA-tagged TDP-43ΔNLS (a, b) or R495x-FUS (c, d) with RACK1 and eukaryotic 40S 
(Rps6) and 60S (RPL14) ribosome subunits (arrows). In neighbouring HA-negative UT cells, RACK1 is diffusely localized in the cytoplasm. Nuclei 
stained with DAPI in merged images. Scale bars: 10 μm
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TDP-43ΔNLS in recipient cells and the ratio of recipient/
donor TDP-43ΔNLS (Fig.  8b–d), indicating that RACK1 
KD significantly inhibited the intercellular transmission 
of misfolded TDP-43ΔNLS.

RACK1 KD alleviates retinal degeneration and delays 
the decline of motor function in human WT and mutant 
TDP‑43 transgenic D. melanogaster
Finally, we sought to investigate whether the aforemen-
tioned beneficial effects of RACK1 KD on TDP-43ΔNLS 
associated phenotypes in HEK293T cells could be trans-
lated into protective activity for neurons in vivo. To this 
end, we employed an established D. melanogaster UAS-
Gal4 expression system to target expression of human 
wild-type TDP-43 and ALS-associated mutant TDP-
43Q331K (hTDP-43WT and hTDP-43Q331K) [17] in retinal 
(driven by the GMR promotor) or motor (driven by the 
D42 promotor) neurons with or without knocking down 
of endogenous RACK1 by RACK1-RNAi co-expression 
(Fig. 9a), with mCherry-RNAi serving as a control.

Firstly, retinal degeneration was assessed for the loss 
of ommatidia and structural organization of the retina. 
As shown in Fig.  9b, compared to undriven controls 
(J–L), flies co-expressing mCherry-RNAi with hTDP-
43WT displayed mild neurodegeneration (A & C), con-
sistent with a previous report [37], and the phenotype 
was more severe with expression of mutant hTDP-
43Q331K (E & G). Quantification of retinal degenera-
tion (Fig.  9c) showed that in both male and female 
flies, hTDP-43Q331K caused more neuronal cell death 
than hTDP-43WT (Males: mean of 14.8 dead omma-
tidia out of ~ 700 per eye for hTDP-43Q331K vs. 8.2 for 
hTDP-43WT; Females: 18.5 vs. 9.2). In contrast, flies 
co-expressing RACK1-RNAi with either hTDP-43WT 
or hTDP-43Q331K displayed significantly less degenera-
tion in all four of these populations (B, D, F, H). Note 
that in several individuals expressing hTDP-43WT 
with RACK1-RNAi, the number of dead ommatidia 
was reduced to zero. In contrast, in flies expressing 
either allele of hTDP-43 with control mCherry-RNAi, 
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neuronal death was always observed (Fig.  9c). Addi-
tional evidence of neurodegeneration was observed in 
both hTDP-43WT and hTDP-43Q331K expressing flies, 
which displayed structural disorganization of the ret-
ina. These phenotypes were also significantly restored 
by RACK1-RNAi (Fig. 9d). Interestingly, flies express-
ing GMR-RACK1-RNAi alone (Fig.  9b, I) were com-
parable to undriven controls (Fig. 9b, J–L), suggesting 
that RACK1 may be dispensable in mature fly retinal 
neurons.

Secondly, the motor function of transgenic flies was 
assessed using a previously established climbing assay 
[59]. As shown in Fig.  9e, both male and female flies 
expressing hTDP-43WT in motor neurons displayed 
reduced climbing ability compared to controls, which 
was significantly improved by RACK1-RNAi in both 
sexes, suggesting that knocking down of endogenous 
RACK1 delayed the decline of motor function caused 
by human TDP-43.

Together, these results demonstrate that knocking 
down of RACK1 significantly alleviated retinal degen-
eration and delayed motor neuron dysfunction caused 
by expression of hTDP-43WT or hTDP-43Q331K in D. 
melanogaster.

Discussion
TDP-43 and FUS have drawn great interest in neurosci-
ence since first identified as pathogenic proteins asso-
ciated with ALS and FTLD. Because TDP-43 and FUS 
share many similarities in terms of their protein struc-
ture, nucleocytoplasmic distribution, physiological func-
tion, and histopathology in diseased human tissues, it is 
not surprising that a number of common cellular path-
ways have been identified to participate in the pathogenic 
activities of TDP-43 and FUS cytoplasmic aggregates. In 
the present study, we report our findings that support an 
additional shared pathway underlying the detrimental 
effects of TDP-43 and FUS aggregation in the cytoplasm, 
and explore a potential therapeutic avenue for the treat-
ment of neurodegenerative diseases with TDP-43 and 
FUS proteinopathies.

RACK1, a key player in pathogenic TDP‑43 and FUS 
aggregation‑induced global translational suppression
RACK1 can come in proximity and interact with TDP-
43 and FUS under physiological conditions existing 
in normal cells, and in stress granules, which can tran-
siently repress protein translation as a protective activity 
[68]. However, the interaction of RACK1 with protein 
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aggregates in diseased cells may be pathologically sig-
nificant and contribute to disruption of protein expres-
sion. In a Drosophila model of ALS, mutant TDP-43 
was shown to repress translation of Futsch/Map1B, a 

key protein regulating axonal and dendritic develop-
ment and microtubule organization at the neuromus-
cular junction [14]. In mouse primary neurons, mutant 
TDP-43, together with Fragile X Syndrome protein 
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(FMRP), represses translation of neuronal proteins Rac1 
and GluR1 [39]. In Drosophila and rat primary neurons, 
mutant TDP-43 induces a prolonged translational sup-
pression by stimulating eIF2α phosphorylation [34]. 
Importantly, more recent studies using transfected 
human neuroblastoma cell lines or fibroblasts derived 
from ALS-FUS patients have provided strong evidence 
that TDP-43 and FUS cytoplasmic aggregates suppress 
global translation, and that mutant TDP-43 exerts this 
effect through direct interaction with the ribosome scaf-
fold protein RACK1 [32, 57]. This work is consistent 
with our current findings that TDP-43ΔNLS and  FUSΔNLS 
mutants co-aggregate with RACK1 and suppress global 
translation in transfected HEK293T cells. Furthermore, 
we show that RACK1 KD not only reduced aggregation 
of TDP-43ΔNLS and  FUSΔNLS, but also caused a shift of 
both mutants from being predominantly cytoplasmic 
to nuclear in a sub-population of transfected cells (dis-
cussed further below), accompanied by restoration of 
global translation, strongly suggesting that RACK1 is a 
key player in this aggregation/translational suppression 
process.

RACK1—a scaffold linking pathogenic TDP‑43 and FUS 
to ribosomes in formation of large aggregate complexes
To decipher the mechanism underlying the above obser-
vation, it is worthwhile to recapitulate the fundamental 
biological function of ribosomes. The ribosome is well 
appreciated as the central apparatus of protein synthe-
sis, with the small (40S in eukaryotes) subunit initiating 
the mRNA to amino acid decoding/translational process 
while the large (60S in eukaryotes) subunit catalyzes the 
peptide transferase activity to generate nascent polypep-
tide chains. RACK1 is widely recognized to be an integral 
constituent of the 40S ribosomal subunit, which in turn 
is stably associated with the 60S subunit. Our confocal 
microscopic studies have demonstrated that TDP-43ΔNLS 
and  FUSΔNLS recruited both 40S and 60S subunits, in 
addition to RACK1, to the same aggregate complex in 
the cytoplasm (Fig. 6), resulting in global suppression of 
translation.

Aggregate inhibition of global translation: size matters?
An interesting phenomenon observed from our SUn-
SET-ICC studies is that global translational suppression 
appears to be predominantly correlated with large dis-
tinctive aggregates of TDP-43ΔNLS or  FUSΔNLS but not the 
diffuse pool in the cytoplasm (Figs. 4c, 5c). This implies 
that global translation may not be significantly impaired 
unless the optical area of aggregated TDP-43 or FUS 
reaches a certain threshold. This is in line with previous 
findings using a motoneuron-like neuroblastoma cell 

line, NSC-34, which show that neuronal toxicity is attrib-
uted to the largest cytoplasmic aggregates of TDP-43 [6].

Redistribution of NLS‑deficient TDP‑43 and FUS 
from predominantly cytoplasmic to nuclear expression 
upon RACK1 knockdown
Perhaps the most unexpected observation from the 
present study was that RACK1 KD changed the pre-
dominantly cytoplasmic mislocalization of TDP-43ΔNLS 
and  FUSΔNLS to a normal nuclear localization in a sub-
population of transfected cells despite their lack of a 
functional NLS. One potential explanation is that the 
anti-aggregation activity of RACK1 KD reduced forma-
tion of compact large aggregates of TDP-43ΔNLS and 
 FUSΔNLS with the polyribosome, consequently allowing 
non-aggregated free molecules to diffuse from the cyto-
plasm to the nucleus. Given the current knowledge that 
cytosolic proteins are capable of crossing the nuclear 
pore complexes (NPC) through passive diffusion (as well 
as active transport), and that the likelihood of this pro-
cess is not only inversely correlated with the molecular 
mass but also can be influenced by protein conformation 
[64], we speculate that TDP-43ΔNLS and  FUSΔNLS may 
have partly entered the nucleus through passive diffusion, 
as opposed to the classical NLS-dependent active nuclear 
import pathway for physiological TDP-43 and FUS [4]. 
Moreover, the cutoff molecular mass for passive diffusion 
across NPC can be up to 90-110kD [69], which encom-
passes the molecular weights of monomer/dimer TDP-43 
and monomer FUS.

RACK1 knockdown rescues TDP‑43‑associated 
neurodegeneration in vivo
A most important question arising from the present 
study is whether the healthy nuclear TDP-43 and FUS 
are capable of carrying out their physiological functions 
in cells in which RACK1 KD attenuates the toxic effects 
of TDP-43ΔNLS or  FUSΔNLS. Healthy TDP-43 and FUS, 
as nuclear ribonucleoproteins, are well-known for their 
role in alternative splicing regulation of specific mRNA 
targets as well as mRNA transport and stability [2, 5, 16, 
22, 26, 27, 52, 65]. In the present study, we directly tested 
RACK1 KD strategy in Drosophila models transgenic for 
human WT or mutant TDP-43 exclusively in retinal or 
motor neurons in vivo. We found that RACK1 KD signif-
icantly alleviated retinal neurodegeneration and delayed 
locomotion deficit of TDP-43 transgenic flies, indicat-
ing that RACK1 KD allows normal healthy fly TDP-43 to 
perform its physiological functions. Moreover, flies with 
RACK1 KD alone were not only viable, but also exhib-
ited retinal health comparable to control flies, suggesting 
that physiological level of RACK1 may not be required 
for the survival and function of differentiated neurons in 
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flies (Fig. 9). This is in agreement with previous findings 
that knocking down of RACK1 does not affect mature 
cell viability and proliferation in Drosophila [40], despite 
lethality when expressed in early development, particu-
larly oogenesis [31]. Similar strategies can be employed 
in future studies to characterize the effect of RACK1 KD 
on transgenic flies expressing human FUS mutations [35, 
62].

Overall, our results reveal a novel shared mechanism 
of pathogenesis for misfolded aggregates of TDP-43 and 
FUS mediated by interference with protein translation 
in a RACK1-dependent manner and provide proof-of-
concept evidence for targeting RACK1 as a therapeutic 
approach for TDP-43 or FUS proteinopathy associated 
with ALS and FTLD.

Materials and methods
Cell culture, plasmids, and transfection
Cell culture
Human embryonic kidney 293T (HEK293T) cell line 
was purchased from American Type Culture Collection 
(ATCC, Rockville, MD, USA), and maintained in Dul-
becco’s Modified Eagle Medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS), GlutaMax™ (2 mM) 
and antibiotics (50 U/ml penicillin and 50 μg/ml strepto-
mycin) at 37 °C in 5%  CO2.

Plasmids
HA-tagged WT TDP-43, TDP-43ΔNLS (K82A/R83A/
K84A), WT FUS, R495x-FUS, and P525L-FUS FUS 
(collectively designated  FUSΔNLS) were generated as 
previously described [51]. His-Myc-tagged R38D/K40E-
RACK1 (DE-RACK1) was a kind gift from Marcello Ceci 
lab (Tuscia University, Italy). Flag-tagged human long 
variant (Lv)  isoform of DISC1, 10W/S-DISC1, was con-
structed by GenScript Biotech (Piscataway, NJ, USA).

Transfection
cDNA plasmids were delivered into HEK293T cells 
using Lipofectamine LTX reagent (ThermoFisher Scien-
tific, Waltham, MA, USA) following the manufacturer’s 
instruction, and cells were analyzed 48  h post-trans-
fection. RACK1 KD was achieved by transfection of a 
pool of 3 target-specific siRNA plasmids against human 
RACK1 (Santa Cruz Biotechnology, Dallas, TX, USA, 
sc-36354) using Lipofectamine RNAiMAX reagent 
(ThermoFisher) according to the manufacturer’s instruc-
tion, and incubated for 72  h prior to cDNA plasmid 
transfection where indicated.

SUnSET
To monitor global translation, cells were treated with 
5  µg/ml of puromycin (ThermoFisher) for 10  min at 

37  °C in conditioned media, and lysed in 2% SDS for 
total protein extraction, electrophoresis, and western 
blotting quantification or fixed in 4% paraformalde-
hyde (PFA) for immunocytochemical and microscopic 
analysis.

Immunocytochemistry
HEK293T cells were washed twice with Phosphate Buff-
ered Saline (PBS) and fixed in 4% PFA for 15 min at room 
temperature (RT), followed by wash with 20 mM glycine 
for 10 min at RT with constant rocking to quench resid-
ual PFA. Cells were then incubated with blocking buffer 
containing PBS, 1% Bovine Serum Albumin (BSA), 10% 
normal goat serum, and 0.1% Triton-X-100 for 30  min 
at RT. The following primary antibodies were incubated 
for 1 h at RT or overnight at 4 °C: rabbit polyclonal anti-
HA (Abcam, Cambridge, UK, ab9110, 1:1,000), chicken 
polyclonal anti-HA (Abcam, ab9111, 1:10,000), rabbit 
polyclonal anti-c-Myc (Abcam, ab9106, 1:1,000), mouse 
monoclonal anti-RACK1 (BD Biosciences, San Jose, 
CA, USA, 610178, 1:500), rabbit monoclonal  RACK1mis 
(ProMIS Neurosciences, see below, 1 μg/ml), rabbit mon-
oclonal anti-RpS6 (Cell Signaling, Danvers, MA, USA, 
5G10, 1:100), rabbit polyclonal anti-RPL14 (Bethyl Lab-
oratories, Montgomery, TX, USA, A305-052, 1:1,000), 
mouse monoclonal anti-puromycin (ThermoFisher, 
clone 12D10, 1:1,000), rabbit monoclonal anti-Flag (Cell 
Signaling, 2368S, 1:2,000). Cells were then washed with 
PBS/0.1%Triton-X-100 three times for 10 min with con-
stant rocking, followed by incubation with Alexa Fluor® 
goat anti-rabbit, -mouse, or -chicken secondary antibody 
(ThermoFisher, 1:1,000) for 30  min at RT in the dark. 
Cells were then washed with PBS/0.1%Triton-X-100 
three times for 10 min, dipped in 5% PBS, and mounted 
with ProLong Gold Anti-fade Reagent with DAPI (Ther-
moFisher, P36931). Cells were analyzed by confocal 
microscopy (Leica TCS SP8 MP, Wetzlar, Germany).

The  RACK1mis monoclonal antibody was generated 
by ProMIS Neurosciences using a proprietary compu-
tational modeling method, “Collective Coordinates” 
[48], to identify regions of RACK1 thermodynamically 
likely to be exposed on misfolded/unfolded RACK1 but 
not on the properly folded form of the protein. Rab-
bits were immunized with the predicted epitopes to 
generate monoclonal antibodies that were screened by 
ICC for recognition of RACK1 present in cytoplasmic 
aggregates of HEK293T cells transfected with TDP-
43ΔNLS or R495x-FUS, and without detectable staining 
of diffuse, physiological RACK1 present in the cyto-
plasm. The staining properties of the  RACK1mis anti-
body are shown in Additional file 1: Fig. S7.
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Immunoblotting
Cells were washed twice with ice-cold PBS and lysed in 
2% SDS, followed by sonication at 30% power for 15 s to 
extract total protein. Protein content was determined by 
BCA assay (ThermoFisher). 10  µg of protein was sepa-
rated on 4–12% NuPAGE Bis–Tris SDS-PAGE (Ther-
moFisher), transferred onto a PVDF membrane, and 
blocked in Tris buffered saline (TBS) containing 5% skim 
milk and 0.1% Tween-20 for 1 h at RT. The following pri-
mary antibodies were incubated overnight at 4 °C: rabbit 
anti-HA (Abcam, ab9110, 1:1,000), mouse anti-RACK1 
(BD Biosciences, 610178, 1:2,000), mouse anti-puromy-
cin (ThermoFisher, clone 12D10, 1:10,000), mouse anti-
α-tubulin (ProteinTech, Rosemont, IL, USA, 66031-1-Ig, 
1:20,000), mouse anti-β-actin (Applied Biological Materi-
als, Richmond, BC, Canada, G043, 1:1,000), rabbit anti-
lamin B1 (abcam, ab16048, 1:1,000), mouse anti-TDP-43 
(ProteinTech, 60019-2-Ig, 1:5,000), rabbit anti-phospho 
TDP-43 pS403/404 (Cosmo Bio, Carlsbad, CA, USA, 
TIP-PTD-P05, 1:3,000), mouse anti-GAPDH (Ther-
moFisher, AM4300, 1:100,000). Membranes were washed 
with TBS/0.1%Tween (TBST) three times for 10  min at 
RT with constant rocking, followed by horseradish per-
oxidase (HRP)-conjugated goat anti-mouse IgG (Sigma, 
St. Louis, MI, USA, AP181P, 1:5,000) or donkey anti-rab-
bit secondary IgG secondary antibody (Sigma, AP182P, 
1:5,000) incubation for 30  min at RT. Membranes were 
then washed with TBST three times for 10  min, and 
developed with SuperSignal™ West Femto Maximum 
Sensitivity Substrate (ThermoFisher).

Immunohistochemistry
For fluorescence-based IHC, paraffin-embedded spinal 
cord sections (6 μm) from healthy control, fALS-C9orf72, 
fALS-FUS-R521C, or sALS (kindly gifted by Drs. Ian 
Mackenzie and Janice Robertson) were de-paraffinized 
for 20  min at 55  °C, followed by rehydration in xylene, 
xylene/ethanol (1:1), 100%, 95%, 75%, 50% of ethanol, and 
TBS. The sections were then exposed to sub-boiling anti-
gen retrieval buffer containing 20 mM sodium citrate pH 
6.0 for 10 min, cooled at RT for 30 min, and incubated in 
blocking buffer containing TBS, 10% normal goat serum 
(NGS), 3% BSA, and 0.3% Triton-X-100 for 2  h, prior 
to incubation with primary antibodies diluted in back-
ground-reducing antibody diluent (Agilent, Santa Clara, 
CA, USA) overnight at 4  °C in a humidified chamber. 
The following antibodies were used: mouse anti-RACK1 
(BD Biosciences, 610178, 1:100), rabbit anti-FUS (Sigma, 
HPA008784, 1:1,000), rabbit monoclonal  RACK1mis 
(ProMIS Neurosciences, 1  μg/ml). Sections were then 
washed in TBS/0.3% Triton-X-100 (TBS-T) three times 
for 5  min with constant rocking, followed by incuba-
tion with Alexa  Fluor® goat anti-rabbit, or -mouse IgG 

secondary antibody (ThermoFisher, 1:500) for 45 min at 
RT in the dark, and washed in TBS/0.3% Triton-X-100 3 
X 5 min. Auto-fluorescence was then quenched by 0.1% 
Sudan Black B in 70% ethanol. The sections were finally 
mounted with ProLong Gold Anti-fade Reagent with 
DAPI (ThermoFisher), and analyzed by confocal micros-
copy (Leica TCS SP8 MP, Wetzlar, Germany).

For chromogenic IHC, fresh frozen cryo-sections 
(25  μm) of AD frontal cortex brains and sALS cervical 
spinal cords (kindly gifted by Dr. Ian Mackenzie) were 
fixed in 10% NBF for 5 min, washed in TBS three times 
for 10  min, followed by incubation with 0.3%  H2O2 in 
methanol for 30  min at RT to quench endogenous per-
oxidase. Sections were washed in TBS-T, three times 
for 5  min, and incubated in blocking buffer for 2  h at 
RT. Endogenous biotin was then blocked by incubation 
with Avidin (Vector Laboratories, Newark, CA, USA) 
for 15 min at RT and two 5 min washes in TBS-T prior 
to incubation with primary antibodies diluted in back-
ground reducing antibody diluent (Agilent) overnight at 
4  °C. The following antibodies were used: mouse anti-
RACK1 (BD Biosciences, 1:100), rabbit  RACKmis (ProMIS 
Neurosciences, 1  μg/ml). Sections were then washed in 
TBS-T three times for 10  min, followed by incubation 
with biotin F(ab)’2 fragment goat anti-mouse or -rabbit 
IgG secondary antibody (ThermoFisher) for 1  h at RT, 
washed in TBS-T, rinsed briefly in TBS, prior to ampli-
fication in Avidin–Biotin Complex (Vector) for 45 min at 
RT. VIP HRP substrate (Vector) was then applied to the 
sections for 2 min, followed by nuclear counterstaining in 
Methyl Green (Vector) for 2 min. Sections were cleared 
by dehydration in ethanol and incubation in Citrasolv 
(Decon Labs, PA, USA) twice for 10  min. Finally, sec-
tions were mounted onto microscopic slides in Permount 
mounting medium (ThermoFisher).

Nucleocytoplasmic fractionation
Cells were washed twice in ice-cold PBS, followed by 
centrifugation at 3000 RPM for 5  min at 4  °C. Cell pel-
lets were resuspended in cytoplasm extraction buffer 
containing 10 mM HEPES (pH 7.9), 10 mM KCl, 1 mM 
EDTA (pH 8), 1 mM EGTA (pH 8), 0.1% NP-40, 1 mM 
PMSF, and protease inhibitor cocktail (ThermoFisher) 
and homogenized 10 times using a 25-gauge needle, fol-
lowed by rotation for 15 min at 4 °C and centrifugation at 
3000 RPM for 5 min at 4 °C. Supernatant was collected as 
the cytosolic fraction. Pellets were washed three times in 
cytoplasm extraction buffer, then resuspended in nuclear 
extraction buffer containing 20  mM HEPES (pH 7.9), 
420  mM NaCl, 1  mM EDTA (pH 8), 1  mM EGTA (pH 
8), 0.5% NP-40, 0.1% SDS, 10% glycerol, 1 mM PMSF, and 
protease inhibitor cocktail (ThermoFisher), and homoge-
nized 10 times using a 25-gauge needle. The mixture was 
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sonicated for 3 s at 20% power, followed by centrifugation 
at 14,000 RPM for 30 min at 4 °C. Supernatant was col-
lected as the nuclear fraction.

Intercellular transmission
Intercellular transmission assay was performed following 
a previously established procedure and is illustrated in 
Fig. 8a. Briefly, donor cells were transfected with RACK1 
siRNA or left un-transfected as control for 72 h, followed 
by TDP-43ΔNLS cDNA plasmid transfection for an addi-
tional 48 h. Donor cells were then collected and subjected 
to western blot analysis for confirmation of RACK1 
siRNA activity and TDP-43ΔNLS expression. The condi-
tioned medium from donor cells was centrifuged at 1000 
RPM for 5 min at RT to remove cell debris. Supernatant 
was then added to naïve recipient cells and incubated for 
72 h, followed by western blot analysis for quantitation of 
transmitted TDP-43ΔNLS.

Drosophila melanogaster in vivo studies
Source of D. melanogaster
The following publicly available D. melanogaster lines 
were obtained from Bloomington Drosophila Stock 
Center (BDSC, Bloomington, IN, USA): GMR-Gal4 
(BDSC #9146), D42-Gal4 (BDSC #7009), UAS-hTDP-
43WT (BDSC #79587) [17], UAS-hTDP-43Q331K (BDSC 
#79590) [17], UAS-RACK1-RNAi TRiP.HMS01171 
(BDSC #34692), UAS-mCherry-RNAi (BDSC #35785).

External eye imaging
For eye analysis, flies were maintained at 25  °C. Photo-
graphs of fly external eyes were obtained using a Zeiss 
Stemi SV 11 dissection microscope at 6× magnification 
equipped with an Olympus OM-D E-M1 digital camera 
controlled by Olympus Image Share app. Dead omma-
tidia were counted visually using a dissecting microscope, 
with the experimenter blinded to condition. 21–33 flies 
were scored per condition. Each data point is the mean of 
left and right eye for one individual.

Preparation of fly eyes for histology
Flies were anaesthetized with  CO2 and decapitated. 
Heads were fixed in 4% PFA 0.2% Triton-x in PBS for 2 h 
at RT, and then incubated in 30% sucrose in PBS for 2 h 
at 4  °C for cryopreservation. Heads were embedded in 
OCT (Tissue-Tek) in rubber molds and frozen at − 80 °C. 
Tissue was cryo-sectioned at − 20 C into 10  µm slices, 
mounted onto slides, and cover-slipped using Vectashield 
(Vector Laboratories, Newark, CA, USA). No counter-
stain was needed as retinal pigments are highly autofluo-
rescent between approximately 470–600 nm excitation.

Imaging and analysis of retina
Retinal sections were viewed on an Olympus 
FLUOVIEW FV1000 Confocal Laser Scanning Biologi-
cal Microscope with Fluoview software. Single plane 
images were captured using 488  nm excitation with a 
20 × objective. Image files were code-named in order to 
blind the experimenter to genotype.

Climbing assay
The locomotion of flies was performed as previously 
described [59]. Cohorts of 15 adult flies, which had 
been allowed to mate for 1–2 days after eclosion, were 
separated by sex and housed in their testing cohorts 
under controlled conditions of 23  °C, 50–60% humid-
ity, and 12-h on/off light cycle. Each week, 6–9  h into 
the 12-h light cycle of the flies (coinciding with their 
most stable activity levels), the climbing assays were 
conducted. Lighting and environmental conditions 
were carefully controlled in the testing area. Flies were 
anaesthetized briefly with  CO2 and placed in a 100 ml 
measuring cylinder. They were given 15 min to recover 
from anesthesia and to acclimatize to the cylinder. The 
measuring cylinder was tapped 3 times upon a mouse 
pad to send the flies to the bottom, and a still photo-
graph was taken 10 s later using an iPhone. Flies were 
then placed onto fresh food until the following week. 
From the photographs, the location of each fly in the 
graduated cylinder and distance climbed was noted. 
> 60 flies per genotype were measured, and the results 
analyzed by two-way ANOVA.

Statistics
Statistical analysis was performed using GraphPad Prism 
(GraphPad Software, San Diego CA, USA). ANOVA, 
Mann–Whitney, or Student’s t-test was performed 
where appropriate as indicated to determine the signifi-
cant differences. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** 
p ≤ 0.0001.
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