Initial Evaluation of High-Dose Extended-Release Calcifediol (ERC) in Patients with Stage 5 Chronic Kidney Disease on Hemodialysis

Abstract TH-OR19, Session OR044 (Thurs 04 Nov 4:30-6:00 pm PDT)

Stephen A. Strugnell¹, Philipp Csomor², Akhtar Ashfaq¹ and Charles W. Bishop¹

¹OPKO Health Inc, Miami, FL, United States (US) and

²Vifor Pharma Ltd, Glattbrugg, Zurich, Switzerland.

Disclosures

- Drs. Strugnell, Ashfaq and Bishop are salaried employees of OPKO Health Inc. Dr. Csomor is a salaried employee of Vifor Pharma Ltd. Options on company stock are part of their compensation packages.
- The clinical study presented in this talk was jointly funded by OPKO Health and Vifor Pharma.

Background

- Extended-release calcifediol (ERC) has been FDA-approved since 2016 for the treatment of secondary hyperparathyroidism (SHPT) in adults with stage 3 or 4 CKD and vitamin D insufficiency.
- Approved doses are 30 mcg/day escalating, as needed, to 60 mcg/day (210 or 420 mcg/week).
- Conversion of calcifediol (25(OH)D₃) to calcitriol (1,25(OH)₂D₃) by CYP27B1 (1α-hydroxylase) occurs primarily in the kidney, in the consensus view of the scientific community, despite the enzyme's expression in other tissues. This view supports a belief that normal serum levels of 1,25(OH)₂D cannot be maintained with advancing CKD.

Background (Continued)

- A phase 2a study explored ERC treatment of end-stage renal disease (ESRD) patients with SHPT who required regular hemodialysis (HD).
- The goals of the study were to:
 - Evaluate whether these patients could tolerate a high dose of ERC (900 mcg/wk) for 26 weeks;
 - 2. Ascertain whether ERC could normalize serum 1,25(OH)₂D in the absence of functional kidneys; and,
 - 3. Determine whether ERC has an impact on iPTH levels.

Methods

- Forty-four adults with ESRD on regular HD (for at least six months) were enrolled from 27 US dialysis centers.
- All subjects had iPTH ≥150 to <600 pg/mL and serum total 25(OH)D <50 ng/mL.
- Subjects underwent an 8-week washout from vitamin D and other PTH-lowering therapies and were then randomized to 26 weeks of single-blinded (subjects only) treatment with ERC (300 mcg 3x/week during HD) or matching placebo.
- Serum total 25(OH)D and 1,25(OH)₂D, calcium (Ca), phosphorus (P) and plasma iPTH were monitored on a weekly or biweekly basis.

Study Design

Pharmacokinetic (PK) observations were completed on 19/33 (58%) of ERC-treated subjects, per protocol. PK data will be presented elsewhere.

FU = Follow-up

PK = Pharmacokinetic evaluation

Post-Washout Baseline Demographics

	ERC (n=33)	Placebo (n=11)
Sex	15F/18M	5F/6M
Race	1 Asian/23 Black/9 White	7 Black/4 White
Age [†]	57.6 (12.6)	58.5 (10.6)
Serum total 25(OH)D (ng/mL)†	24.4 (9.4)	38.4 (15.7)*
Serum calcium (Corr.)(mg/dL) †	8.9 (0.5)	8.8 (0.8)
Serum phosphorus (mg/dL)†	4.8 (1.2)	5.0 (1.2)
Plasma iPTH (pg/mL)†	526 (167)	544 (255)

[†]Data are Mean (SD)

^{*}Significantly different from ERC, p < 0.05

Changes in Serum Total 25(OH)D

Changes in Serum Total 1,25(OH)₂D with ERC

Serum Total 1,25(OH)₂D vs 25(OH)D

Changes in Serum Ca and P During Treatment

Changes in Serum Ca and P vs 25(OH)D

Changes in iPTH During Treatment

Effect of Weight and 25(OH)D on iPTH

^{*} Significantly different from Body Weight >85 kg, p < 0.05

^{***} Significantly different from Body Weight >85 kg, p < 0.001

Rates of Adverse / Serious Adverse Events

Protocol specified 3:1 randomization to active:placebo

Treatment Group (n)	Number of TEAEs*	Average Number of TEAEs per Subject	Number of SAEs	Average Number of SAEs per Subject
ERC (32) [†]	159	5.0	31	1.0
Placebo (11)	57	5.2	14	1.3

Most Common TEAEs	ERC	Placebo
Hypotension	6 (18.8%)	4 (36.4%)
Diarrhoea	5 (15.6%)	1 (9.1%)
Constipation	4 (12.5%)	0 (0.0%)

Most Common SAEs	ERC	Placebo
Atrial Fibrillation	0 (0.0%)	1 (9.1%)
Bradycardia	0 (0.0%)	1 (9.1%)

^{*}TEAE = Treatment-Emergent Adverse Event; SAE =Serious Adverse Event

[†]One of the subjects in the ERC group was randomized to treatment but discontinued before receiving study drug.

Summary of Results

- 44 subjects were enrolled 33 ERC, 11 placebo.
- ERC-treated subjects attained mean (±SE) steady-state levels of 25(OH)D of 161 ± 11 ng/mL vs 30 ± 5.6 ng/mL with placebo.
- Mean serum total 1,25(OH)₂D rose into the normal range (62.0 ± 8.3 pg/mL) from low baseline levels (10.6 ± 1.5 pg/mL) with ERC.
- Normalization of 1,25(OH)₂D with ERC occurred with elevation of 25(OH)D to ≥ 50 ng/mL.

Summary of Results (Continued)

- Stabilization of iPTH was observed with ERC vs placebo, and significant decreases were observed with increasing 25(OH)D exposure.
- Greater reductions in iPTH may have been possible if better serum P control had been achieved during the treatment period.
- No clinically meaningful increases in serum Ca or P, or differences in the incidence of adverse events, were observed with ERC compared to placebo.

Conclusions

- ERC was:
 - Well tolerated at 900 mcg/week for 26 weeks
 - Readily activated to produce normal levels of 1,25(OH)₂D at 25(OH)D levels ≥ 50 ng/mL
 - Capable of stabilizing iPTH levels
- These data show that serum 1,25(OH)₂D can be normalized in HD patients by raising and maintaining serum 25(OH)D at levels of ≥ 50 ng/mL, despite the loss of kidney function.

Thank you

