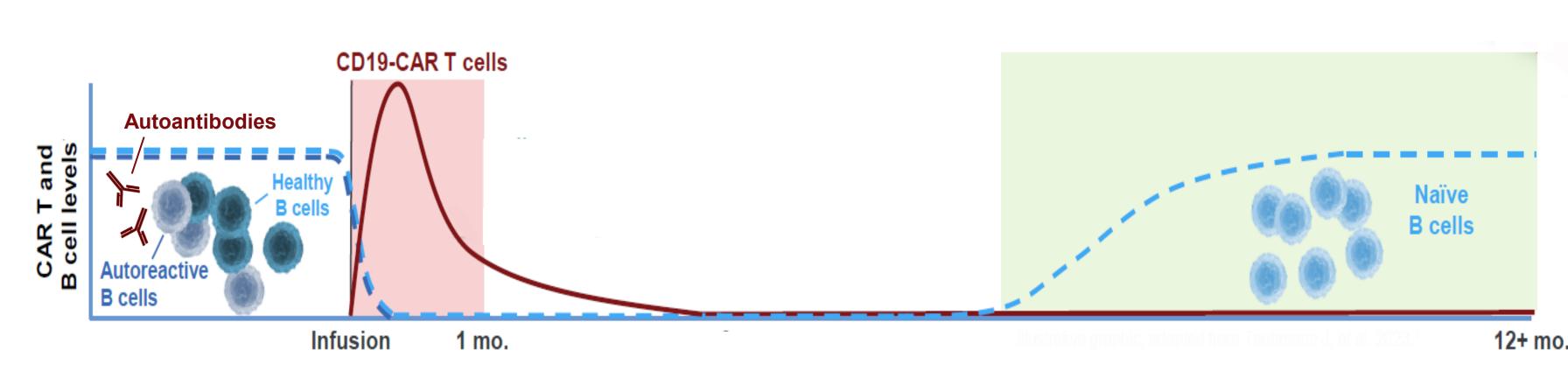
RESET-MG™: Clinical Trial Evaluating Rese-cel (Resecabtagene Autoleucel), A Fully Human, Autologous 4-1BB CD19-CAR T Cell Therapy in Generalized Myasthenia Gravis

Presented at MGFA
Scientific Session
AANEM
Oct 29 – Nov 1, 2025
San Francisco, USA

A. Habib¹, C. Ulane², R. Reshef², J. Hogan³, Y. White³, J. Gresh³, W. Hull³, S. Wilkinson³, C. DiCasoli³, T. Furmanak³, J. Volkov³, D. Nunez³, S Basu³, R. Tummala³, D. J. Chang³


1. UC Irvine, CA, USA; 2. Columbia University, NY, USA; 3. Cabaletta Bio, PA, USA

Cabaletta Bio®

www.cabalettabio.com/technology/posters-publications

Background: CAR T Cell Therapy in Myasthenia Gravis

- Myasthenia gravis (MG) is primarily driven by pathogenic autoantibodies originating from autoreactive B cells.¹
- Current therapies focus on downstream immune effector functions, and do not adequately control the underlying autoimmune process; drug-free remission is infrequent;^{2–5} up to 15% of patients are considered to have disease refractory to treatment.⁶
- B cell depletion therapies have shown efficacy in MG, but responses may be incomplete, and relapses remain common, likely due to incomplete depletion and re-emergence of autoreactive B cells. 1,7,8
- Chimeric antigen receptor (CAR) T cells may have the potential to achieve durable remission through a one-time deep, but transient, depletion of B cells in MG (Figure 1).^{9,12}
- Rese-cel (resecabtagene autoleucel) is a fully human, autologous 4-1BB CD19-CAR T cell therapy. 10,11
- Here, we present data from the RESET-MG (NCT06359041) trial: A Phase 1/2 trial evaluating the safety and efficacy of rese-cel in two MG cohorts (AChR positive and AChR negative). 11,13

Figure 1. Proposed effect of CD19-CAR T cell therapy.^{9,12} Deep depletion of B cells in MG patients may lead to cessation of disease by removing a central driver of inflammation (autoreactive B cells) and allowing the immune system to return to a tolerant state, resulting in deep and durable remissions off therapy.

RESET-MG Study Design

Key Inclusion Criteria^{11,13}

- Age ≥18 and ≤70 diagnosed with MG with generalized muscle weakness, defined as MGFA class II, III, and IV
- Active disease despite standard treatment
- Presence of AChR antibodies for the AChR antibody-positive cohort
- AChR antibody-negative cohort: presence of MuSK or LRP4 antibodies OR seronegative

Key Exclusion Criteria^{11,13}

- Significant lung or cardiac impairment
- Treatment with B cell-depleting agent within prior ~6 months
- Previous CAR T cell therapy and/or HSCT
- Active infection requiring medication at screening
- Current symptoms of severe, progressive, or uncontrolled organ disease

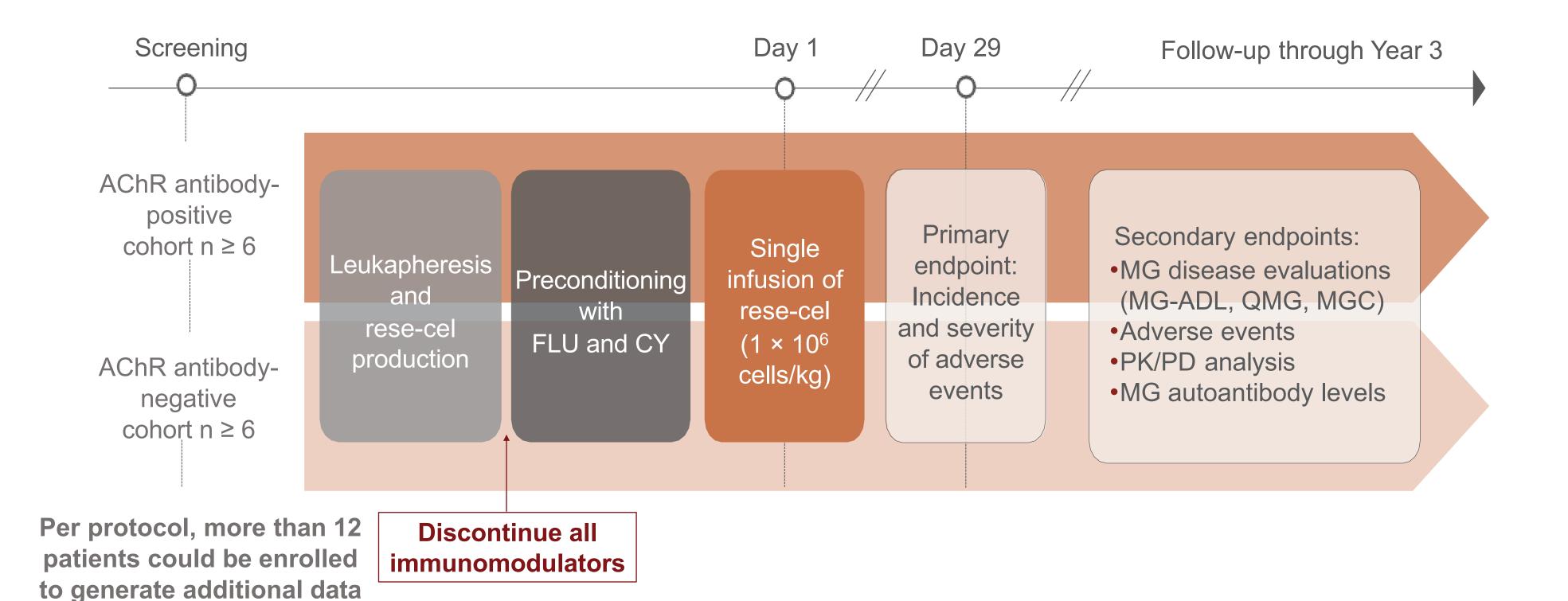


Figure 2. RESET-MG study design^{11,13}

RESET-MG Results: Baseline Characteristics and Safety*

Table 1. Baseline characteristics of first 4 patients in RESET-MG

	AChR Positive		AChR Negative	
Patient / Cohort	AChR-pos-1	AChR-pos-2	AChR-neg-1	AChR-neg-2
Age, sex	62, M	44, F	54, F	70, F
Disease duration (approx. years)	1	6	4	1
Autoantibodies	AChR	AChR	Seronegative [‡]	Seronegative [‡]
QMG [†]	11	18	22	21
MG-ADL†	15	13	17	14
Therapies at screening	GC, AZA, IVIg, PYR	EFG, PYR	GC, PYR, PLA	PYR, MMF, ROZ
Other prior therapies	<u>-</u>	GC, IVIg, MMF, AZA, ECU, PLA	IVIg, AZA, RTX, ECU, EFG	IVIg
GC dose at screening (mg/day)	25	_	15	_

[†]Baseline disease activity = activity before preconditioning.

‡Seronegative = no anti-AChR, anti-MuSK and anti-LRP4 antibodies.

Table 2. Incidence of CRS, ICANS, serious infection, and related serious adverse events[†]

	AChR Positive		AChR Negative	
Patient / Cohort	AChR-pos-1	AChR-pos-2**	AChR-neg-1	AChR-neg-2
CRS [‡]	None	Grade 2	None	None
ICANS [‡]	None	None	None	None
Serious infections [§]	None	None	None	None
Related SAEs (Grade) [¶] (Excluding CRS/ICANS)	None	Anorexia (Grade 3) Physical deconditioning (Grade 3)	None	None

[†]Primary endpoint of the Phase 1/2 study is incidence and severity of adverse events through Day 29. Serious infections and related SAEs are reported to latest follow-up. No patient experienced clinical sequelae from CRS, ICANS or related SAEs.

Rese-cel expansion & B cell kinetics*

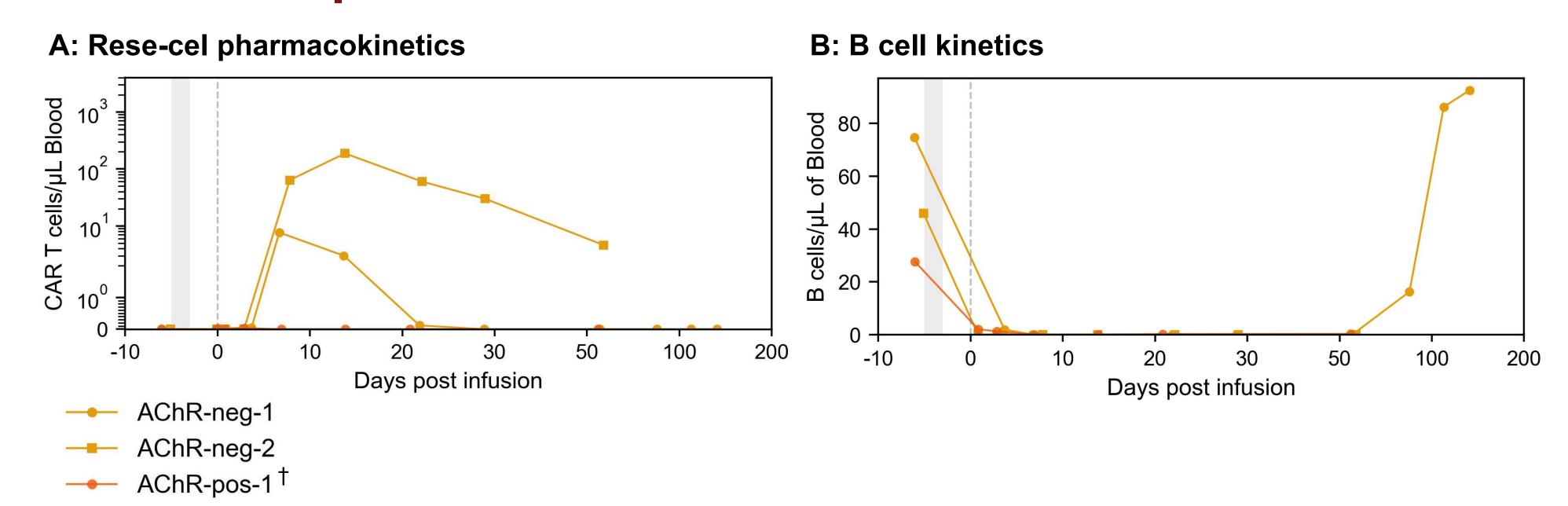


Figure 3. Rese-cel pharmacokinetic (PK) profile and B cell kinetics: (A) Rese-cel PK profile in MG patients in CAR T cells per µL blood measured by digital PCR and (B) B cell counts (CD19+CD20+) in peripheral blood of MG patients at baseline before preconditioning and over time following rese-cel infusion measured by flow cytometry. X-axes represent time following rese-cel infusion in days; the vertical gray dotted line indicates the day of rese-cel infusion and the vertical gray shading prior to infusion indicates the window in time for preconditioning across all MG subjects.

†Reduced rese-cel expansion observed in AChR-pos-1 may be attributed to patient's continued use of AZA, a prohibited medication, until day of infusion (Day 1).

Clinical efficacy data following rese-cel infusion*

Table 3. Clinical efficacy measures: As of the latest follow-up 3 of 3 MG patients, with efficacy follow-up, showed improvement in QMG and MG-ADL scores.

	AChR Positive	AChR Negative		
Patient / Cohort	AChR-pos-1 [†]	AChR-neg-1	AChR-neg-2	
Latest follow-up	Week 8	Week 20	Week 8	
Glucocorticoid-free	Tapering	✓	✓	
Immunomodulatory medication-free	IVIg	√	✓	
Cholinesterase inhibitor-free	No	√	✓	
QMG (baseline to latest follow-up)	11→7	22→5	21→11	
MG-ADL (baseline to latest follow-up)	15→7	17→0	14→7	

†AZA, a prohibited medication, was continued until the day of infusion (Day 1). IVIg was stopped prior to rese-cel infusion and restarted 4 weeks after infusion for continued MG symptoms.

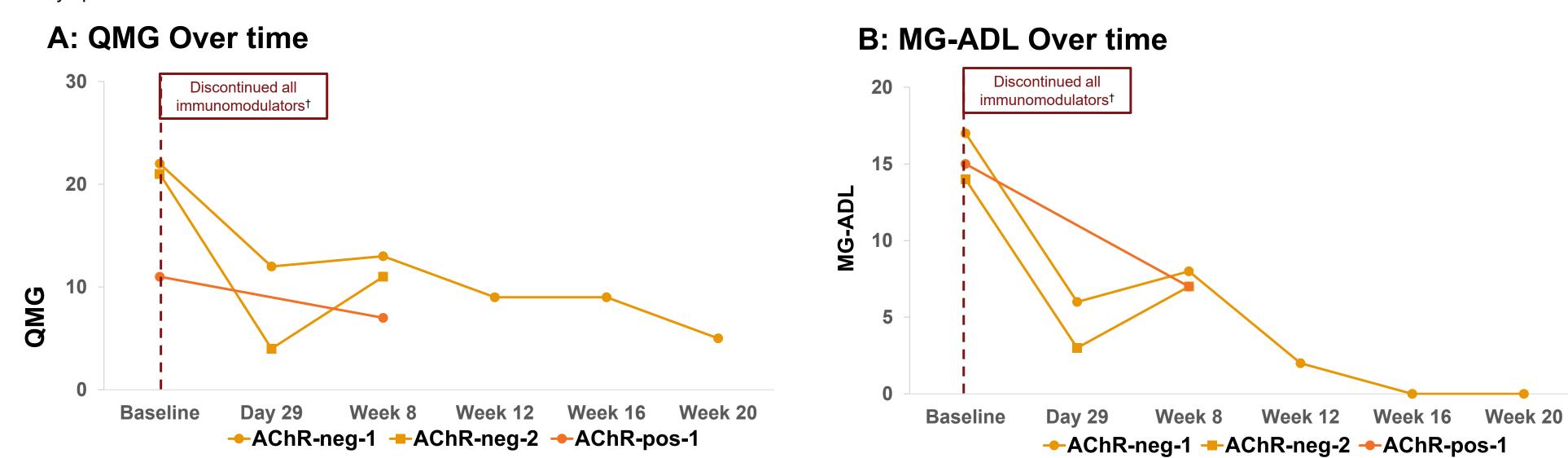


Figure 4. Clinical efficacy: (A) QMG over time (B) MG-ADL over time

[†]AChR-pos-1: AZA, a prohibited medication, was continued until the day of infusion (Day 1). IVIg was stopped prior to rese-cel infusion and restarted 4 weeks after infusion for continued MG symptoms. AChR-pos-1, Day 29 visit data unavailable.

Summary*

- Rese-cel was generally well tolerated across 2 AChR-positive and 2 AChR-negative patients (both seronegative; no anti-MuSK or anti-LRP4 antibodies).
 - No CRS occurred in 3 of 4 patients.
 - Grade 2 CRS occurred in AChR-pos-2 that resolved with no sequelae.
- At last follow-up, the 2 evaluable patients (AChR-neg-1 and AChR-neg-2) who remain off immunomodulatory medication achieved significant improvements in MG-ADL (with AChR-neg-1 achieving Minimal Symptom Expression).
 - AChR-pos-1 is not evaluable due to use of a prohibited cytotoxic medication that may have inhibited CAR T activity; AChR-pos-2 has insufficient follow-up.
- Rese-cel average peak expansion (T_{max}) occurred on Day 8 post-infusion and B cells were depleted by Day 8 post-infusion in all patients. Transitional naïve B cells began to repopulate by Week 12 in 1 patient with sufficient follow-up.
- Both cohorts have been fully enrolled and patients have been or will be dosed in the coming months.

*As of 11 Sep, 2025

References: **1.** Yi JS, et al. *Muscle Nerve*. 2018;57(2):172–184. **2**. Bi Z, et al. *Ther Adv Chronic Dis*. 2022;13:20406223221122538. **3**. Suzuki S, et al. *Clin Exp Neuroimmunol*. 2023;14(1):5–12. **4**. Mercelis R, et al. *Acta Neurol Belg*. 2023;123(2):375–384. **5**. Raja S, et al. *Neurology*. 2021;96:2602. **6**. Suh J, et al. *Yale J Biol Med*. 2013;86(2):255–260. **7**. Fichtner ML, et al. *Acta Neuropathol Commun*. 2022;10(1):154. **8**. Huda R. *Front Immunol*. 2020;11:240. **9**. Müller F, et al. *N Engl J Med*. 2024;390(8):687–700. **10**. Peng BJ, et al. *Mol Ther Methods Clin Dev*. 2024;32(2):101267. **11**. NCT06359041. Available online at: www.clinicaltrials.gov/study/NCT06359041 [Accessed Sept 2025]. **12**. Taubmann J, et al. OPO141. Abstract presented at: EULAR; May 31, 2023; Milan, Italy. **13**. Cabaletta Bio – Data on File.

EFG, efgartigimod; FLU, fludarabine; GC, glucocorticoid; HSCT, hematopoietic stem cell transplantation; ICANS, Immune Effector Cell-Associated Neurotoxicity Syndrome; IVIg, intravenous immunoglobulin; LRP4, low-density lipoprotein receptor-related protein 4; MG, myasthenia gravis; MG-ADL, MG – Activities of Daily Living; MGC, Myasthenia Gravis Composite; MGFA, Myasthenia Gravis Foundation of America; MMF, mycophenolate mofetil; MuSK muscle-specific tyrosine kinase; PCR, polymerase chain reaction; PD, pharmacodynamic; PK, pharmacokinetic; PLA, plasmapheresis; PYR, pyridostigmine; QMG, Quantitative Myasthenia Gravis Score; RESET, REstoring SElf-Tolerance; rese-cel, resecabtagene autoleucel; ROZ, Rozanolixizumab; RTX, rituximab; SAE, serious adverse event.

AChR, acetylcholine receptor; ASTCT, American Society for Transplantation and Cellular Therapy; AZA, azathioprine; CAR, Chimeric antigen receptor; CRS, Cytokine Release Syndrome; CY, cyclophosphamide; ECU, eculizumab;

[‡]Graded per ASTCT Consensus Grading Criteria.

[§]Coded in System Organ Class of Infections and Infestations and meets seriousness criteria. ¶As assessed per US Food and Drug Administration guidelines.

^{**}AChR-pos-2: Week 4 safety data presented; efficacy follow-up ongoing.