Evercore ISI AutoTech & AI Forum

KLA Opportunities in Automotive

Oreste Donzella
Executive Vice President, EPC Group
KLA Corporation

May 25, 2023
Disclaimer

Statements in this presentation other than historical facts, such as statements pertaining to: (i) future industry demand for semiconductors and WFE; (ii) future development of regulatory landscape; (iii) our market position for the future; (iv) our forecast of financial measures for the following quarter and 2023; (v) our long-term financial targets and underlying assumptions; (vi) our future investment plan on R&D, technology and infrastructure; and (vii) future shareholder returns, are forward-looking statements and subject to the Safe Harbor provisions created by the Private Securities Litigation Reform Act of 1995.

These forward-looking statements are based on current information and expectations and involve a number of risks and uncertainties. Actual results may differ materially from those projected in such statements due to various factors, including but not limited to: the impact of the COVID-19 pandemic on the global economy and on our business, financial condition and results of operations, including the supply chain constraints we are experiencing as a result of the pandemic; economic, political and social conditions in the countries in which we, our customers and our suppliers operate, including rising inflation and interest rates, Russian’s invasion of Ukraine and global trade policies; disruption to our manufacturing facilities or other operations, or the operations of our customers, due to natural catastrophic events, health epidemics or terrorism; ongoing changes in the technology industry, and the semiconductor industry in particular, including future growth rates, pricing trends in end-markets, or changes in customer capital spending patterns; our ability to timely develop new technologies and products that successfully anticipate or address changes in the semiconductor industry; our ability to maintain our technology advantage and protect our proprietary rights; our ability to compete with new products introduced by our competitors; our ability to attract, onboard and retain key personnel; cybersecurity threats, cyber incidents affecting our and our customers, suppliers and other service providers’ systems and networks and our and their ability to access critical information systems for daily business operations; liability to our customers under indemnification provisions if our products fail to operate properly or contain defects or our customers are sued by third parties due to our products; exposure to a highly concentrated customer base; availability and cost of the wide range of materials used in the production of our products; our ability to operate our business in accordance with our business plan; legal, regulatory and tax environments in which we perform our operations and conduct our business and our ability to comply with relevant laws and regulations; increasing attention to ESG Matters and the resulting costs, risks and impact on our business; our ability to pay interest and repay the principal of our current indebtedness is dependent upon our ability to manage our business operations, our credit rating and the ongoing interest rate environment, among other factors; our ability or the ability of our customers to obtain licenses for the sale of certain products or provision of certain services to customers in China, pursuant to regulations recently issued by the Bureau of Industry and Security of the U.S. Department of Commerce, which could impact our business, financial condition and results of operations; instability in the global credit and financial markets, including existing and future bank failures; our exposure to currency exchange rate fluctuations, or declining economic conditions in those countries where we conduct our business; changes in our effective tax rate resulting from changes in the tax rates imposed by jurisdictions where our profits are determined to be earned and taxed, expiration of tax holidays in certain jurisdictions, resolution of issues arising from tax audits with various authorities or changes in tax laws or the interpretation of such tax laws; our ability to identify suitable acquisition targets and successfully integrate and manage acquired businesses; and unexpected delays, difficulties and expenses in executing against our environmental, climate, inclusion and diversity or other ESG targets, goals and commitments. For other factors that may cause actual results to differ materially from those projected and anticipated in forward-looking statements in this press release, please refer to KLA Corporation’s Annual Report on Form 10-K for the year ended June 30, 2022, and other subsequent filings with the Securities and Exchange Commission. KLA Corporation assumes no obligation to, and does not currently intend to, update these forward-looking statements.
KLA at a Glance

- Founded in 1976
- Headquarters in Milpitas, CA
- ~14,000 Employees
- $10.5B CY22 Revenue
- >65% PhD/Master’s among professional roles

Diversified Leader in the Electronics Ecosystem
KLA’s Presence in the Electronics Manufacturing Ecosystem

- SUBSTRATES
- CHIPS
- WAFER-LEVEL PACKAGING
- COMPONENTS
- PRINTED CIRCUIT BOARD
- FLAT PANEL DISPLAY

AUTOMOTIVE
CONNECTED DEVICES
MOBILE DEVICES
5G INFRASTRUCTURE
DATA
Automotive Electronics
The Automotive Industry is Being Transformed...

Chip Shortage
- Just-in-time to just-in-case
- Strategic supply agreements and direct fab investments

Software-Defined Vehicles
- >80% of innovation enabled by semiconductors
- OEMs working directly with chip companies
- Subscription services

Electrification
- New platforms and factories
- Batteries, inverters and power semiconductors

Driver Assistance
- Sensor proliferation and domain controllers
- Leading-edge CPU/GPU, memory

New entrants | New requirements | New partnerships
... Driving Broad-based Demand for Semiconductors

Strong Growth

Auto Semi Forecast ($Billion)$

<table>
<thead>
<tr>
<th>Year</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>$63</td>
<td>$74</td>
<td>$82</td>
<td>$88</td>
<td>$95</td>
<td>$103</td>
<td>$110</td>
<td>$116</td>
</tr>
</tbody>
</table>

All Device Types

- Processors 4%
- Memory 9%
- Photonics 9%
- Power 34%
- Sensors/MEMS 13%
- MCU 15%
- Analog 7%
- RF 2%
- ASIC 7%

All Design Rules

- 15 new fabs $≥ 350nm
- 6 new fabs 110-250nm
- 4 new fabs 28-90nm
- 7 new fabs ≤ 16nm

Incremental Automotive Fab Capacity Needed by 2027 (WSPM)

- 370,333

1Source: IHS, Cowen and Company
2Source: Yole- 2021 breakdown
3Source: Yole, others. 25k WSPM typical automotive fab size
... and Changing Automotive Fab Profiles

Mature DR Fabs
- 200nm fab equipment refresh
- New 300mm large DR fabs

Power Semiconductor Fabs
- SiC and GaN
- 300mm IGBT

Advanced DR Fabs
- ‘Zero Defect’ methods
- Back-fill leading edge fabs

![Image: IGBT = insulated gate bipolar transistor](image)

Changing landscape provides new diversified opportunities for KLA
Automotive at KLA
Automotive at KLA

37%
KLA Auto System Revenue CAGR¹

11%
KLA Auto Service Revenue CAGR²

>3x
KLA vs. Total Auto Semi CAGR²

>$300M
Power SiC Revenue in 2022

>35%
Auto % of SPTS Revenue in 2022

1 KLA Auto Semi CAGR 2017-2023F
2 Combined KLA System + Service revenue (30%) vs. IHS/Cowen total auto semi (8.8%), 2017-2023F
Enabling Zero Defect
Potential Reliability Defects Must Be Found to Meet Quality Goals

- Hard killer defects in a test coverage gap
- Function of yield and test coverage

- Become activated some time after test
- Usually requires statistical approach
Dedicated Automotive Inspection Products Launched in 2021

Modern auto-specific portfolio provides capability, capacity and extendibility
I-PAT® Inline Defect Screening: Leveraging AI to Reduce Risks

Each die is scored based on aggregate defectivity.
Enabling Silicon Carbide (SiC)
SiC has significant Cost Issues

Typical Yield by Step\(^1\)

<table>
<thead>
<tr>
<th>Step</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate and Epitaxy Yield</td>
<td>65%</td>
</tr>
<tr>
<td>Device Fab – Wafer Yield (Scrap)</td>
<td>92%</td>
</tr>
<tr>
<td>Device Fab – Probe Yield</td>
<td>80%</td>
</tr>
<tr>
<td>Dicing Yield</td>
<td>98%</td>
</tr>
<tr>
<td>Packaging Yield</td>
<td>99%</td>
</tr>
<tr>
<td>Final Test / Burn-in Yield</td>
<td>97%</td>
</tr>
</tbody>
</table>

Overall Yield < 50%

$\text{SiC} \rightarrow \text{Si IGBT}; 3x$

Cost

Reliability

Escapes = f (yield, test coverage)\(^3\)

Significant Cost Increase due to substrate immaturity and device yield issues

\(^1\)SiC yield and cost are typical values (2023), compiled from Yole, JP Morgan, PGC Consultants, KLA data, and other sources. Large variation from fab-to-fab.

\(^2\)At equivalent performance for EV traction inverter mission profile compared to comparable Si IGBT device.

\(^3\)See, for example, Williams-Brown or Seth-Agrawal test escape models
SiC at KLA

Proven Solutions

Soitec boosts customer yield of Silicon Carbide semiconductor manufacturing with KLA inspection technology

Soitec boosts customer yield of Silicon Carbide semiconductor manufacturing with KLA inspection technology

Bormin (Grenoble), France, July 13th, 2022 - Soitec (Euronext Paris), an industry leader in designing and manufacturing innovative semiconductor materials, has selected KLA Corporation (NASDAQ: KLAC), a leader in process control and advanced inspection systems, to enable high yield manufacturing of innovative Silicon Carbide (SiC) devices for the automotive industry.

Soitec leverages its unique and patented SmartSiC™ technology to produce SiC substrates, which aim to improve the performance of power electronics devices and boost electric vehicles’ energy efficiency.

Based on its track record of using KLA’s inspectors for its Silicon-on-Insulator (SOI) wafers, Soitec has extended its partnership with KLA and selected the Surfscan® SP A2 unpatterned inspection system for its SmartSiC™ wafers.

Soitec’s SmartSiC™ wafers provide superior and unique crystal quality, while KLA’s Surfscan® SP A2 leverages DIUV optics and advanced algorithms to support substrate quality control. This partnership will enable SiC substrate production at new and even more sophisticated levels, supporting the industry to bring high quality SiC semiconductors in high volumes to the automotive market.

Highlights from KLA’s SiC Portfolio

Process

- plasma etch
- plasma dicing
- PECVD
- PVD

Inspection

inspection solutions for substrate/epitaxy, patterned wafer and inline defect screening

Metrology

metrology solutions for wafer shape, films, overlay, CD, implant and analytics
KLA Solutions are Central to SiC Cost Reduction

Objectives
- More functioning die per wafer
- Better performance and power density (Amps/mm²)
- Lower substrate costs
- Fewer defects

Substrate Innovation
- Engineered SiC substrates
- Novel wafering processes
- SiC growth technologies

Technology Migration
- 1.8x more die per wafer

Substrate/epi inspection | Product wafer inspection | Metrology | Unit process development
Summary
Automotive is a Growth Engine Across the Entire Company

Announcing IMEC & KLA STAR Consortium

Semiconductor Talent and Automotive Research

- Research for electrification and autonomous reliability
- Connecting automotive ecosystem and research institutions
- Training future talent
- Global partnership with regional execution
- Europe
- Michigan, U.S.
- Japan
MOU Signing with Founding Partners
Summary

The automotive industry has been forever changed by the chip shortage, vehicle electrification and the software-defined vehicle.

KLA works closely with the automotive ecosystem to develop a comprehensive portfolio of process control solutions.

The rise of SiC power semi devices poses additional yield, reliability, and cost challenges.

Inline defect screening is being adopted by automotive fabs to reduce escapes for reliability sensitive devices.