CAR T-cells to treat autoimmunity
CD19 CAR T-CELLS FOR SLE
The following presentation, including any printed or electronic copy of these slides, the talks given by the presenters, the information communicated during any delivery of the presentation and any question and answer session and any document or material distributed at or in connection with the presentation (collectively, the “Presentation”) has been prepared by Cababeta Bio, Inc. (‘we,” “us,” “our,” “CabaBeta” or the “Company”) and is made for informational purposes only. This Presentation does not purport to be a prospectus, to be complete or to contain all of the information you may desire. Statements contained herein are made as of the date of this Presentation unless stated otherwise, and this Presentation shall not under any circumstances create an implication that the information contained herein is correct as of any time after such date or that information will be updated or revised to reflect information that subsequently becomes available or changes occurring after the date hereof. This Presentation may contain “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995, in connection with our business, operations, and financial conditions, and include, but are not limited to, express or implied statements regarding our current beliefs, expectations and assumptions regarding: our business, future plans and strategies for our CAR T and CARTA technologies and CABA™ platform; Cababeta’s ability to grow its autoimmune-focused pipeline; the ability to capitalize on and potential benefits resulting from the translational research partnership with Professor Georg Schett and the exclusive license agreement with IASO Bio; the timing of our planned submission of an Investigational New Drug application (IND) for CABA-201 to the U.S. Food and Drug Administration as well as other planned regulatory filings for our development programs; the progress and results of our DesCAARTes™ Phase 1 trial, including the significance and impact around reported safety and clinical and translational data of cohorts from our DesCAARTes™ trial; the therapeutic potential and clinical benefits of our product candidates; the expectation that Cababeta may improve outcomes for patients suffering from mucosal pemphigus vulgaris, myasthenia gravis, or other autoimmune diseases; and our ability to escalate dosing as high as 10 to 15 billion cells in cohort AD6, initiate dosing in a combination cohort or otherwise; Cababeta’s plans to implement a pre-treatment regimen and the potential ability to enhance in vivo DSG3-CAART exposure; our ability to advance dose escalation in the DesCAARTes™ Phase 1 trial at the current dose ranges for the current cohorts and any projected potential dose ranges for future cohorts, and to optimize our targeted cell therapy; our ability to evaluate, and the potential significance of, the relationship between DSG3-CAART persistence and potential clinical responses in patients with mPV; our ability to safely retreat additional patients and whether we will continue to observe a lack of immune-mediated clearance of DSG3-CAART cells after retreatment and repeat dosing of patients; our ability to successfully complete our preclinical and clinical studies for our product candidates, including CABA-201, our ongoing Phase 1 DesCAARTes™ trial, and our ongoing Phase 1 MusCAARTs™ trial of MusK-CAART, including our ability to enroll the requisite number of patients, dose each dosing cohort in the intended manner, and progress the trial; the ability of MusK-CAART to target B cells that differentiate into antibody secretion cells, which produce autoantibodies against muscle-specific kinase; our ability to obtain and maintain regulatory approval of our product candidates, including our expectations regarding the intended incentives conferred by and ability to retain Orphan Drug Designation and Fast Track Designation for DSG3-CAART for the treatment of pemphigus vulgaris and Orphan Drug Designation and Fast Track Designation for MusK-CAART to improve activities of daily living and muscle strength in patients with MusK antibody-positive myasthenia gravis; the further expansion and development of our modular CABAl™ platform across a range of autoimmune diseases; our ability to contract with third-party suppliers and manufacturers, implement an enhanced manufacturing process and further develop our product candidates’ capabilities and facilities; our potential commercialization opportunities, including value and addressable market, for our product candidates; our expectations regarding our use of capital and other financial results; and our ability to fund operations into the first quarter of 2025. Words such as, but not limited to, “look forward to,” “believe,” “expect,” “anticipate,” “estimate,” “intend,” “plan,” “would,” “should” and could,” and similar expressions or identifiers, identify forward-looking statements.

Various risks, uncertainties and assumptions could cause actual results to differ materially from those anticipated or implied in our forward-looking statements. Such risks and uncertainties include, but are not limited to, risks related to the success, timing, and completion of preclinical and clinical studies; the risk of unanticipated findings in the preclinical and clinical studies; our ability to obtain regulatory approval for our product candidates; the risk of uncertain regulatory feedback, including competition from other companies for regulatory approval; the risk that results in preclinical studies or clinical trials, including the results of the clinical trials or studies to which we refer herein, may not be predictive of future results in connection with future studies; our ability to obtain, maintain, and enforce regulatory approval and intellectual property rights; our clinical trials, including the results of the clinical trials or studies to which we refer herein, may not be predictive of future results in connection with future studies; the impact of COVID-19 on the timing, probability, interpretability, and results of our clinical trials or studies or risks related to a result of extraordinary events or circumstances such as the COVID-19 pandemic; and any business interruptions to our operations or to those of our clinical sites, manufacturers, suppliers, or other vendors resulting from the COVID-19 pandemic or similar public health crisis. New risks and uncertainties may emerge from time to time, and it is not possible to predict all of such risks and uncertainties. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events or otherwise. Although we believe the expectations reflected in such forward-looking statements are reasonable, we can give no assurance that such expectations will prove to be correct. Accordingly, you are cautioned not to place undue reliance on these forward-looking statements. No representations or warranties (expressed or implied) are made about the accuracy of any such forward-looking statements. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause our actual results to differ materially from those contained in the forward-looking statements, see the section entitled “Risk Factors” in our most recent annual report on Form 10-K, as well as discussions of potential risks, uncertainties, and other important factors in our other filings with the Securities and Exchange Commission. Certain information contained in this Presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company’s own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this Presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from these third-party sources. The Company is the owner of various trademarks, trade names and service marks. Certain other trademarks, trade names and service marks appearing in this Presentation are the property of third parties. Solely for convenience, the trademarks and trade names in this Presentation are referred to without the ® and TM symbols, but such references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.
Overview

• Autoimmune diseases background

• Treatment options
 • B cell depletion – why it works and why it doesn’t
 • Is it possible to “cure” autoimmune disease?
 • Developing curative cellular therapies for patients with autoimmune disease

• CD19 CAR T for Autoimmune disease
 • Emerging data in SLE
 • Unique considerations
Autoimmune Disease – Global Impact

• An estimated 4.5% of the world’s population lives with autoimmune disease\(^1\)

• Estimated economic burden of >$100 billion\(^2\)

• Incidence is increasing\(^3,4\)
 • Environmental factors
 • Improved surveillance and diagnoses

• Represents a global unmet medical need for which new therapies are needed

Current Treatment Modalities for Autoimmune Disease

Therapies listed in **bold** represent standard of care therapies commonly used to treat SLE

- **Systemic therapies**
 - Metabolic inhibitors: **mycophenolate mofetil** and methotrexate
 - Immune suppressants: **hydroxychloroquine**, and corticosteroids (**prednisone**), **voclosporin**
 - Cytotoxic therapies: cyclophosphamide

- **Targeted therapies**
 - B cell depletion: rituximab
 - Cytokine blockers: **belimumab** (anti-BAFF) and **anifrolumab** (anti-IFNAR1)
 - T and B cell signaling blockade: BTK and JAK inhibitors

- **These therapies remain largely non-curative, requiring chronic therapy**

B cell depletion is effective in diseases caused by both T and B cells

WHY?....

....because B cells play a central role in driving (autoreactive) T cell responses

1. Rubin, Bloom and Robinson (2019) B Cell Checkpoints in Autoimmune Rheumatic Diseases; Nat Rev Rheum
Rituximab is not Commonly Curative

WHY?

...because Rituximab does not deplete all B cells within tissues¹

- Difficulty in tissue penetration
- Requirement for effector mechanisms to deploy cytotoxic effect
- Therefore, requires repeat administration
- This induces prolonged B cell aplasia

- Newer generations of anti-B cell depleting agents are emerging – may work better²

1. Table excerpted from: Crickx et al (2020) Anti-CD20-mediated B-cell Depletion in autoimmune diseases
Rituximab has limited tissue penetrance

RA patients treated with rituximab have incomplete tissue B cell depletion

1. Onno Teng, YK et al. (2007), Immunohistochemical Analysis as a Means to Predict Responsiveness to Rituximab Treatment Arthritis & Rheumatism.
Systemic Lympho-ablation is Potentially Curative,

- A series of randomized controlled studies have been conducted to test lympho-ablation followed by stem cell rescue for refractory autoimmune disease1,2
 - Over 3000 reported stem cell transplants worldwide
 - Efficacy reported in Severe systemic sclerosis and juvenile sclerosis, MS, SLE, juvenile idiopathic arthritis, multiple sclerosis, NMO and others

- Durable (>3 year) complete remissions off therapy occurred in large numbers of patients3,4
 - 23-71%
 - Suggests curative potential by resetting the immune system

1. Ramalingam and Shah (2021), Stem cell therapy as a Treatment for Autoimmune Disease, \textit{Current Allergy and Asthma Reports}
Systemic Lympho-ablation is Potentially Curative, but Toxic

A series of randomized controlled studies have been conducted to test lympho-ablation followed by stem cell rescue for refractory autoimmune disease1,2

- Over 3000 reported stem cell transplants worldwide
- Efficacy reported in Severe systemic sclerosis and juvenile sclerosis, MS, SLE, juvenile idiopathic arthritis, multiple sclerosis, NMO and others

Durable (>3 year) complete remissions off therapy occurred in large numbers of patients3,4

- 23-71%
- Suggests curative potential by resetting the immune system

Toxicity was unacceptable with high intensity* lympho-ablative regimens (11% mortality)

- *Containing TBI or high dose busulfan

Reduced toxicity with intermediate conditioning** regimens, while maintaining efficacy

- **Utilizing cyclophosphamide with anti-thymocyte globulin

1 Ramalingam and Shah (2021), Stem cell therapy as a Treatment for Autoimmune Disease, \textit{Current Allergy and Asthma Reports}
2 Swart \textit{et al} (2017), Haematopoietic stem cell transplantation for autoimmune disease, \textit{Nature Reviews}
3 Sullivan \textit{et al} (2009), Hematopoietic cell transplantation for autoimmune disease, \textit{Biol Blood Marrow Transplant}
4 Farge \textit{et al} (2010), Autologous hematopoietic stem cell transplantation for autoimmune diseases, \textit{Haematologica}
What We Know…. (a brief summary)

• Autoimmune disease is a major global unmet need
• B cells play a central role in the many autoimmune diseases
• Antibody mediated clearance of B cells is incomplete and without durable responses
• Many autoimmune disease may be “cured” with deep lympho-ablation
 • Toxicity of deep lympho-ablation severely limits use of stem cell transplant

Engineered T cells (in Oncology):
• Can traffic through all tissues to effect cytotoxicity
• Have established clinical efficacy for the systemic eradication of B cells
• Can be administered without the toxicity related to deep lymphoablative preconditioning
CD19 CAR-T therapy for autoimmune disease

In the past two years, several papers have shown CD19 CAR-T efficacy in autoimmune disease

3. Muller et. al (2023) CD19-targeted CAR T cells in refractory antisynthetase syndrome, *The Lancet*
Anti-CD19 CAR-T in SLE

Patient treatment schema overview from FAU compassionate use protocol

1. Maschan et al. (2021), Multiple site place-of-care manufactured anti-CD19 CAR-T cells induce high remission rates in B-cell malignancy patients, Nature Communications
Robust T cell expansion observed post-infusion

Similar kinetics as observed with CD19 CAR T-cell therapy in hematologic malignancies

Specific CD19$^+$ B cell aplasia observed for 30 days post-infusion
Rapid recovery of non-B cell leukocyte populations post-lymphodepletion

Remission or near complete remission observed at 3 months

Selected clinical biomarkers change dramatically by 3 months

Reduction observed in SLE associated antibodies

Most patients show a decrease following CAR-T infusion – patient #4 appears to be an outlier

Nucleosome

Sm(D3)

1. Internal data generated at Cabaletta in collaboration with FAU
Reduction observed in SLE associated antibodies

Patient #4 continues to remain an outlier

1. Internal data generated at Cabaletta in collaboration with FAU
Preservation of pre-infusion vaccine antibodies

Representative titers shown: most patients remain stable or have minimal changes pre/post-infusion

Tetanus

Diphtheria

1. Internal data generated at Cabaletta in collaboration with FAU
Many markers of systemic inflammation decreased at 3 months

B cell cytopenia could drive drop in IL-6 and TNFα either through direct secretion or via T cell activation

1. Internal data generated at Cabaletta in collaboration with FAU
CD19+ B cell recovery observed within 150 days post-infusion

Naïve B cells are the predominant population returning to the periphery post-infusion

Takeaways from initial exploration of CD19 CAR-T in SLE

CD19 41BBz CAR-T appears to have promising efficacy and safety in refractory SLE

• Safety
 • No CRS > grade 1 reported across 5 patients
 • No ICANs of any grade reported
 • Non-B cell cytopenias appear to be due to cyclophosphamide and fludarabine < 14 to 21 days
 • Vaccine and infectious disease antibodies are largely intact

• Efficacy
 • All patients experienced complete or near-complete remission by 3 months
 • No relapses to date: duration of remission has lasted ~ 1 to 2 years (data shared at ACR last Nov)
 • Patients currently off all other immune suppressive therapies
 • Preliminary evidence suggests immune reset across most patients
Active clinical trials exploring CAR-T in autoimmune disease

List below includes CD19 and BCMA CAR-T approaches (search date of 4.21.2023)
Unique considerations for CAR-T in autoimmune disease

Safety, Efficacy, Manufacturing considerations (not exhaustive)
Potential mitigation strategies
Not exhaustive
Summary

CD19 (FMC63) 41BBz CAR-T for SLE (in FAU compassionate use protocol)

- **B cells are a major driver of autoimmune disease**
 - Antibody secreting function
 - As an antigen presenting cell
 - Secretes pro-inflammatory cytokines as an APC
- **CD19 CAR T-cells have been observed to eliminate all B cells in SLE patients**
 - Superior penetrance as compared to standard biologics approaches
 - Can provide safe and durable complete responses up to two years so far
- **Unique considerations in employing CD19 CAR T-cells in autoimmune disease**
 - Mitigation strategies exist for potential roadblocks
Acknowledgments

• Cabaletta
 Jenell Volkov
 Daniel Nunez
 Mallory Fouch
 Zach Vorndran
 Darshil Patel
 Steve Wong

• FAU
 Georg Schett
 Andreas Mackensen