31st EADV Congress
MILAN & ONLINE
7 - 10 SEPTEMBER 2022
DESIGNING THE FUTURE OF DERMATOLOGY AND VENERELOGY
A Phase 1 trial of DSG3-CAART cells in mucosal-dominant pemphigus vulgaris patients: preliminary data

David J. Chang¹, Samik Basu¹, Gwendolyn K. Binder¹, Robert Micheletti², Emanuel Maverakis³, M. Peter Marinkovich⁴, Xiaolong (Alan) Zhou⁵, Janet A. Fairley⁶, David Porter², Mehrdad Abedi³, Wen-Kai Weng⁴, Jayesh Mehta⁵, Umar Farooq⁶, Kimberly Hoffman¹, Jenell Volkov¹, Daniel Nunez¹, Michael Milone², Aimee S. Payne²

¹Cabaletta Bio, Philadelphia, PA, USA; ²University of Pennsylvania, Philadelphia, PA, USA; ³UC Davis, Sacramento, CA, USA; ⁴Stanford University, Stanford, CA, USA; ⁵Northwestern University, Chicago, IL, USA; ⁶University of Iowa, Iowa City, IA, USA
Disclosure

David J. Chang is an employee of Cabaletta Bio, Inc. and a stockholder.
Mucosal-Dominant Pemphigus Vulgaris (mPV)

- Anti-desmoglein 3 (DSG3) antibodies are 98-100% sensitive and specific for diagnosis.
  
  Amagai et al, BJD 1999; Schmidt et al, Exp Derm 2010

- Anti-DSG3 antibodies are necessary and sufficient for blister formation.
  

- Treatment with rituximab plus steroids (~3500 mg/yr) leads to transient remission; 4-9% annual rate of serious infections with repeated infusions.
  
  Joly et al, Lancet 2017; Werth et al, NEJM 2021

- The ideal therapy would selectively eliminate pathogenic anti-DSG3-expressing B cells while sparing healthy B cells.

http://www.vgrd.org/archive/cases/2004/pv/pv.htm
CD19 CAR T Therapy for B-Cell Hematologic Malignancies

DSG3-CAAR T for Mucosal-Dominant Pemphigus Vulgaris

- Pathogenic B cells in mPV are defined by a surface anti-DSG3 B cell receptor

- Replacing the anti-CD19 targeting domain in the CAAR T cell with the DSG3 autoantigen may direct antigen-specific rather than total B cell depletion
Study Objective and Endpoints

• **Primary objective**: to determine the maximum tolerated dose of DSG3-CAART in adult subjects with active mPV

• **Primary endpoint**: adverse events (AEs) related to DSG3-CAART within 3 months of infusion, including dose-limiting toxicities (DLTs), such as cytokine release syndrome (CRS) and Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS)

• **Secondary endpoints** include:
  • DSG3-CAART persistence (qPCR)
  • Anti-DSG3 Antibody levels (ELISA)
  • Disease activity (Pemphigus Disease Area Index (PDAI) Mucous Membrane score)
Ongoing open-label, dose-escalation Phase 1 trial (NCT04422912)

Study Design

Pre-Infusion Evaluation
- Disease activity
- Confirm eligibility requirements
- Collection of baseline research samples

CAAR-T Cell Infusion
Phase A: up to 4 infusions on consecutive days (shown)

Post-Infusion Assessments (36 months)
Safety, efficacy, and correlative research assessments

Screening Phase
Screening visit
Pre-leukapheresis (LP) and LP visit

Interventional Treatment Phase
Day -7 to 1
Follow-up visits to 36 months post-infusion
#1 #2 #3 #4

Manufacturing (Mfg) Phase
Pre-Infusion Evaluation

Study Eligibility & Enrollment
LP
Cell Mfg

Screening visit

Day -7 to 1

Follow-up visits to 36 months post-infusion
Study Design – DSG3-CAART Cell Manufacturing

Ongoing open-label, dose-escalation Phase 1 trial (NCT04422912)

Study Eligibility & Enrollment

Screening visit

Pre-leukapheresis (LP) and LP visit

Manufacturing (Mfg) Phase

Interventional Treatment Phase

Pre-Infusion Evaluation
-Disease activity
-Confirm eligibility requirements
-Collection of baseline research samples

CAAR-T Cell Infusion
Phase A: up to 4 infusions on consecutive days (shown)

Post-Infusion Assessments (36 months)
Safety, efficacy, and correlative research assessments

Follow-up visits to 36 months post-infusion

DSG3-CAART Cell Manufacturing

1. White blood cells (including T cells) are collected
2. T cells lentivirally transduced with DSG3-CAAR
3. DSG3-CAART cells are expanded
4. DSG3-CAART cells are infused into the patient

(~4-5 weeks vein-to-vein)
Study Design – Inclusion and Exclusion Criteria

• Major inclusion criteria
  • Age ≥18 years
  • Biopsy-confirmed diagnosis of mPV
  • Inadequately managed by ≥1 standard immunosuppressive therapies
  • Active disease
  • Anti-DSG3 antibody positive

• Major exclusion criteria
  • Recent rituximab
  • Prednisone > 0.25 mg/kg/day
  • Other autoimmune disorder requiring immunosuppressive therapies
  • Recent investigational treatment
  • Absolute lymphocyte count < 1,000/μL at screening
Systemic immunosuppressants are stopped and prednisone tapered to low dose prior to infusions.

Subjects within a cohort are administered DSG3-CAART infusions sequentially.

Dose is escalated only after current cohort has tolerated the dose through 28 days post-infusion.

### Study Design – Dosing Regimen and Cohorts

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Total DSG3-CAART Cell Dose</th>
<th>Fold Increase in Dose</th>
<th>Subjects per Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2x10^7</td>
<td>1x</td>
<td>3</td>
</tr>
<tr>
<td>A2</td>
<td>1x10^8</td>
<td>5x</td>
<td>3</td>
</tr>
<tr>
<td>A3</td>
<td>5x10^8</td>
<td>25x</td>
<td>3 [+1 A1-1 re-treated at the A3 dose]</td>
</tr>
<tr>
<td>A4</td>
<td>2.5x10^9</td>
<td>125x</td>
<td>3</td>
</tr>
<tr>
<td>A5</td>
<td>5-7.5x10^9</td>
<td>250 to 375x</td>
<td>3</td>
</tr>
<tr>
<td>P4^b</td>
<td>2.5x10^9 + cyclophosphamide and IVIg</td>
<td>125x</td>
<td>3</td>
</tr>
<tr>
<td>A6m^b</td>
<td>1-1.5x10^10</td>
<td>500 to 750x</td>
<td>3</td>
</tr>
</tbody>
</table>

^a A 4th subject was dosed in Cohort A5 to generate additional data

^b Cohort P4 and A6m will be enrolled concurrently.

planned
# Subject Screening Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Cohort A1 2x10⁷ (n=3)</th>
<th>Cohort A2 1x10⁸ (n=3)</th>
<th>Cohort A3 5x10⁸ (n=3)</th>
<th>Cohort A4 2.5x10⁹ (n=3)</th>
<th>Cohort A5 5-7.5x10⁹ (n=4)</th>
<th>Overall (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age, years, median (range)</strong></td>
<td>39 (32-57)</td>
<td>53 (50-54)</td>
<td>60 (47-70)</td>
<td>60 (56-70)</td>
<td>48 (34-57)</td>
<td>54 (32-70)</td>
</tr>
<tr>
<td><strong>Female (%)</strong></td>
<td>67%</td>
<td>67%</td>
<td>67%</td>
<td>67%</td>
<td>0%</td>
<td>50%</td>
</tr>
<tr>
<td><strong>Disease Duration, years, median (range)</strong></td>
<td>3.4 (0.5-4.3)</td>
<td>4.3 (3.9-13.0)</td>
<td>0.7 (0.3-15.0)</td>
<td>3.5 (0.1-12.4)</td>
<td>1.6 (0.2-5.3)</td>
<td>3.4 (0.1-15.0)</td>
</tr>
<tr>
<td><strong>Anti-DSG3 Ab Level, U/mL, median (range)</strong></td>
<td>92 (51-104)</td>
<td>147 (86-168)</td>
<td>147 (63-169)</td>
<td>147 (114-162)</td>
<td>144 (124-169)</td>
<td>144 (51-169)</td>
</tr>
<tr>
<td><strong>Pemphigus Disease Area Index, median (range)</strong></td>
<td>17 (5-20)</td>
<td>6 (6-14)</td>
<td>12 (2-18)</td>
<td>3 (1-4)</td>
<td>5 (4-18)</td>
<td>6 (1-20)</td>
</tr>
<tr>
<td><strong>Prior use of corticosteroids (%)</strong></td>
<td>3 (100%)</td>
<td>3 (100%)</td>
<td>3 (100%)</td>
<td>3 (100%)</td>
<td>3 (75%)</td>
<td>15 (94%)</td>
</tr>
<tr>
<td><strong>Prior use of mycophenolate (%)</strong></td>
<td>2 (67%)</td>
<td>3 (100%)</td>
<td>1 (33%)</td>
<td>2 (67%)</td>
<td>2 (50%)</td>
<td>10 (63%)</td>
</tr>
<tr>
<td><strong>Prior use of rituximab (%)</strong></td>
<td>3 (100%)</td>
<td>3 (100%)</td>
<td>0 (0%)</td>
<td>2 (67%)</td>
<td>1 (25%)</td>
<td>9 (56%)</td>
</tr>
</tbody>
</table>

*A 4th subject was dosed in Cohort A5 to generate additional data*
Safety Data within 3 Months Post-Infusion (28 Days for Cohort A5)

<table>
<thead>
<tr>
<th></th>
<th>Cohort A1 2x10&lt;sup&gt;7&lt;/sup&gt; (n=3)</th>
<th>Cohort A2 1x10&lt;sup&gt;8&lt;/sup&gt; (n=3)</th>
<th>Cohort A3 5x10&lt;sup&gt;8&lt;/sup&gt; (n=3)</th>
<th>Cohort A4 2.5x10&lt;sup&gt;9&lt;/sup&gt; (n=3)</th>
<th>Cohort A5 5-7.5x10&lt;sup&gt;9&lt;/sup&gt; (n=4)&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Overall (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td># Subjects with ≥1 AEs (%)</td>
<td>3 (100%)</td>
<td>3 (100%)</td>
<td>3 (100%)</td>
<td>3 (100%)</td>
<td>4 (100%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td># Subjects with ≥1 Related AEs (%)</td>
<td>0 (0%)</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
<td>1 (25%)</td>
<td>4 (25%)</td>
</tr>
<tr>
<td># Subjects with ≥1 SAEs (%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1&lt;sup&gt;b&lt;/sup&gt; (25%)</td>
<td>1 (6%)</td>
</tr>
<tr>
<td># Subjects with ≥1 Related SAEs (%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1&lt;sup&gt;b&lt;/sup&gt; (25%)</td>
<td>1 (6%)</td>
</tr>
<tr>
<td># Subjects with Cytokine Release Syndrome (CRS) (%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1&lt;sup&gt;b&lt;/sup&gt; (25%)</td>
<td>1 (6%)</td>
</tr>
<tr>
<td># Subjects with Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS) (%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td># Subjects with Dose-Limiting Toxicity (DLT) (%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

<sup>a</sup> A 4<sup>th</sup> subject was dosed in Cohort A5 to generate additional data; safety data for Cohort A5 only through 28 days post-infusion.

<sup>b</sup> Subject A5-4 developed Grade 1 CRS several hours after each of the 2 infusions that resolved within 2 days (related SAEs due to hospitalization). The events were not considered to be DLTs and did not delay study progression.
DSG3-CAART Persistence (qPCR) after Infusion

Cohorts A4 and A5 approached the lower end of range that was observed with CD19 CART therapy plus lymphodepletion for B-cell malignancies.

- **Cohort A1 (2x10^7)**: Persistence observed with CD19 CART plus lymphodepletion

- **Cohort A2 (1x10^8)**

- **Cohort A3 (5x10^8)**

- **Cohort A4 (2.5x10^9)**

- **Cohort A5 (5-7.5x10^9)**

*Subject A1-1-R = Patient A1-1 retreated at the A3 dose level

# Sustained persistence (past Day +29)

---

1. The range of persistence observed with CD19 CART therapy in oncology has not been confirmed to be necessary or sufficient for clinical responses in patients with mPV.
DSG3-CAART Persistence (qPCR) AUC

Linear relationship through Cohort A4, but leveling off with Cohort A5

The range of persistence observed with CD19 CART therapy in oncology has not been confirmed to be necessary or sufficient for clinical responses in patients with mPV.

1. The range of persistence observed with CD19 CART therapy in oncology has not been confirmed to be necessary or sufficient for clinical responses in patients with mPV.
Anti-DSG3 Antibody Levels (ELISA) Across Cohorts A1-A4

**ABSOLUTE VALUES**

- **Cohort A1 (2x10^7)**
- **Cohort A2 (1x10^8)**
- **Cohort A3 (5x10^8)**
- **Cohort A4 (2.5x10^9)**

*Subject A1-1-R = Patient A1-1 retreated at the A3 dose level*
Anti-DSG3 Antibody Levels (ELISA) Across Cohorts A1-A4

**ABSOLUTE VALUES**

- Cohort A1 (2x10^7)
- Cohort A2 (1x10^8)
- Cohort A3 (5x10^8)
- Cohort A4 (2.5x10^9)

**NORMALIZED VALUES**

- Cohort A1 (2x10^7)
- Cohort A2 (1x10^8)
- Cohort A3 (5x10^8)
- Cohort A4 (2.5x10^9)

Dashed lines represent ± 20% from the Pre-Infusion timepoint.

*Subject A1-1-R = Patient A1-1 retreated at the A3 dose level*
### Disease Activity (PDAI Mucous Membrane Score)

<table>
<thead>
<tr>
<th>Cohort (Dose)</th>
<th>Subject</th>
<th>Prior RTX or IVlg*</th>
<th>Meds stopped or tapered prior to inf.</th>
<th>Screen</th>
<th>Pre-Infusion</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>Month 4</th>
<th>Month 5</th>
<th>Month 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (2x10⁷)</td>
<td>A1-1</td>
<td>RTX 10m</td>
<td>PRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 (2x10⁷)</td>
<td>A1-2</td>
<td>RTX 6.5m, IVlg 3m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 (2x10⁷)</td>
<td>A1-3</td>
<td>RTX 9m</td>
<td>MMF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 (1x10⁸)</td>
<td>A2-1</td>
<td>IVlg 4m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 (1x10⁸)</td>
<td>A2-2</td>
<td></td>
</tr>
<tr>
<td>A2 (1x10⁸)</td>
<td>A2-3</td>
<td>IVlg 4m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 (5x10⁸)</td>
<td>A3-1</td>
<td></td>
</tr>
<tr>
<td>A3 (5x10⁸)</td>
<td>A3-2</td>
<td></td>
<td>PRD, MMF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 (5x10⁸)</td>
<td>A3-3</td>
<td></td>
</tr>
<tr>
<td>A4 (2.5x10⁹)</td>
<td>A4-1</td>
<td></td>
<td>PRD, MMF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4 (2.5x10⁹)</td>
<td>A4-2</td>
<td></td>
</tr>
<tr>
<td>A4 (2.5x10⁹)</td>
<td>A4-3</td>
<td></td>
</tr>
</tbody>
</table>

*RTX=rituximab; IVlg=intravenous immunoglobulin; MMF=mycophenolate; PRD=prednisone

*RTX or IVlg within 12 months prior to infusion. RTX permitted within 12 months prior to screening if disease worsening; IVlg permitted >2 weeks prior to screening.
Disease Activity (PDAI Mucous Membrane Score)

<table>
<thead>
<tr>
<th>Cohort (Dose)</th>
<th>Subject</th>
<th>Prior RTX or IV Ig*</th>
<th>Meds stopped or tapered prior to inf.</th>
<th>Screen</th>
<th>Pre-Infusion</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>Month 4</th>
<th>Month 5</th>
<th>Month 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (2x10⁷)</td>
<td>A1-1</td>
<td>RTX 10m</td>
<td>PRD</td>
<td>PRD</td>
<td>IV Ig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 (2x10⁷)</td>
<td>A1-2</td>
<td>RTX 6.5m</td>
<td>IV Ig 3m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 (2x10⁷)</td>
<td>A1-3</td>
<td>RTX 9m</td>
<td>MMF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 (1x10⁸)</td>
<td>A2-1</td>
<td>IV Ig 4m</td>
<td></td>
<td>PRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 (1x10⁸)</td>
<td>A2-2</td>
<td></td>
<td></td>
<td>PRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 (1x10⁸)</td>
<td>A2-3</td>
<td>IV Ig 4m</td>
<td></td>
<td>PRD</td>
<td>RTX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 (5x10⁸)</td>
<td>A3-1</td>
<td></td>
<td></td>
<td>PRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 (5x10⁸)</td>
<td>A3-2</td>
<td>PRD, MMF</td>
<td></td>
<td>PRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 (5x10⁸)</td>
<td>A3-3</td>
<td></td>
<td></td>
<td>PRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4 (2.5x10⁹)</td>
<td>A4-1</td>
<td>PRD, MMF</td>
<td></td>
<td></td>
<td>IV Ig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4 (2.5x10⁹)</td>
<td>A4-2</td>
<td></td>
<td></td>
<td>PRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4 (2.5x10⁹)</td>
<td>A4-3</td>
<td></td>
<td></td>
<td></td>
<td>PRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RTX=rituximab; IV Ig=intravenous immunoglobulin; MMF=mycophenolate; PRD=prednisone

*RTX or IV Ig within 12 months prior to infusion. RTX permitted within 12 months prior to screening if disease worsening; IV Ig permitted >2 weeks prior to screening.

Systemic PV therapy changes were more permissive after month 3; new PV therapy or PRD dose increases shown in red and PRD taper starts shown in green at the time the therapy change occurred.
## Disease Activity (PDAI Mucous Membrane Score)

<table>
<thead>
<tr>
<th>Cohort (Dose)</th>
<th>Subject</th>
<th>Prior RTX or IVIg*</th>
<th>Meds stopped or tapered prior to inf.</th>
<th>Screen</th>
<th>Pre-Infusion</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>Month 4</th>
<th>Month 5</th>
<th>Month 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (2x10⁷)</td>
<td>A1-1</td>
<td>RTX 10m</td>
<td>PRD</td>
<td>20</td>
<td>10</td>
<td>13</td>
<td>33</td>
<td>PRD</td>
<td>70</td>
<td>IVIg</td>
<td>27</td>
</tr>
<tr>
<td>A1 (2x10⁷)</td>
<td>A1-2</td>
<td>RTX 6.5m, IVIg 3m</td>
<td>MMF</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A1 (2x10⁷)</td>
<td>A1-3</td>
<td>RTX 9m</td>
<td>MMF</td>
<td>17</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>A2 (1x10⁸)</td>
<td>A2-1</td>
<td>IVIg 4m</td>
<td>MMF</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>PRD</td>
<td>2</td>
</tr>
<tr>
<td>A2 (1x10⁸)</td>
<td>A2-2</td>
<td></td>
<td>MMF</td>
<td>14</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>PRD</td>
<td>4</td>
</tr>
<tr>
<td>A2 (1x10⁸)</td>
<td>A2-3</td>
<td>IVIg 4m</td>
<td>MMF</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>PRD</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>RTX</td>
</tr>
<tr>
<td>A3 (5x10⁸)</td>
<td>A3-1</td>
<td></td>
<td>MMF</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>PRD</td>
<td>0</td>
<td>0</td>
<td>PRD</td>
</tr>
<tr>
<td>A3 (5x10⁸)</td>
<td>A3-2</td>
<td>PRD, MMF</td>
<td>MMF</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>22</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>A3 (5x10⁸)</td>
<td>A3-3</td>
<td></td>
<td>MMF</td>
<td>18</td>
<td>14</td>
<td>8</td>
<td>14</td>
<td>17</td>
<td>16</td>
<td>PRD</td>
<td>6</td>
</tr>
<tr>
<td>A4 (2.5x10⁹)</td>
<td>A4-1</td>
<td>PRD, MMF</td>
<td>MMF</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>IVIg</td>
<td>4</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>A4 (2.5x10⁹)</td>
<td>A4-2</td>
<td></td>
<td>MMF</td>
<td>1</td>
<td>1</td>
<td>PRD</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>PRD</td>
</tr>
<tr>
<td>A4 (2.5x10⁹)</td>
<td>A4-3</td>
<td></td>
<td>MMF</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>PRD</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

**# Subjects with PDAI=0 or 1 (Clear/Almost Clear)**

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-1</td>
<td>A1-2</td>
<td>A1-3</td>
<td>A2-1</td>
<td>A2-2</td>
<td>A2-3</td>
<td>A3-1</td>
<td>A3-2</td>
<td>A3-3</td>
<td>A4-1</td>
<td>A4-2</td>
<td>A4-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RTX=rituximab; IVIg=intravenous immunoglobulin; MMF=mycophenolate; PRD=prednisone

*RTX or IVIg within 12 months prior to infusion. RTX permitted within 12 months prior to screening if disease worsening; IVIg permitted >2 weeks prior to screening.

Systemic PV therapy changes were more permissive after month 3; new PV therapy or PRD dose increases shown in red and PRD taper starts shown in green at the time the therapy change occurred.
Data on Subject A4-2 (2.5x10⁹ DSG3-CAART Dose)

Persistence of DSG3-CAART detected via qPCR

DSG3-CAART persistence detected at 3 months (not observed with other subjects in Cohorts A1-A4)
Data on Subject A4-2 (2.5x10^9 DSG3-CAART Dose)

Anti-DSG3 antibody levels transiently decreased >20% 

1. DSG3-CAART persistence detected at 3 months (not observed with other subjects in Cohorts A1-A4)

2. Anti-DSG3 Ab levels decreased >20% at 2 and 3 months post-infusion
Data on Subject A4-2 (2.5x10^9 DSG3-CAART Dose)

Disease activity and steroid dose transiently decreased

1. **DSG3-CAART persistence detected at 3 months (not observed with other subjects in Cohorts A1-A4)**

2. **Anti-DSG3 Ab levels decreased >20% at 2 and 3 months post-infusion**

3. **PDAI Mucous Membrane score decreased from 1 to 0 at 3 and 4 months post-infusion and prednisone tapered from 10mg QD to 1mg QD over the 4 months after DSG3-CAART infusion**

<table>
<thead>
<tr>
<th>Disease Activity Measure</th>
<th>Screen</th>
<th>Pre-Infusion</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>Month 4</th>
<th>Month 5</th>
<th>Month 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDAI</td>
<td>1</td>
<td>1 PRD</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>PRD</td>
<td>8</td>
</tr>
<tr>
<td>ODSS¹</td>
<td>10</td>
<td>5 PRD</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Oral Disease Severity Score
Data on Subject A1-2 (1x10^7 DSG3-CAART Dose)

Anti-DSG3 Ab levels and disease activity decreased

1. Anti-DSG3 Ab levels decreased >20%
   - RTX 6.5 months before DSG3-CAART
   - Continued disease activity and elevated anti-DSG3 ab prompted IVIg 3 months before DSG3-CAART
   - Anti-DSG3 ab continued to decrease for 1 year post-DSG3-CAART infusion

2. PDAI Mucous Membrane score decreased from 2 to 0 at 4 and 6-12 months post-infusion

<table>
<thead>
<tr>
<th>Disease Activity Measure</th>
<th>Screen</th>
<th>Pre-Infusion</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>Month 4</th>
<th>Month 5</th>
<th>Month 6</th>
<th>Month 9</th>
<th>Month 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDAI</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ODSS¹</td>
<td>22</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Oral Disease Severity Score
Rationale for Next Planned Dosing Cohorts

- **Cohort P4**: A4 dose (2.5x10^9 cells) combined with cyclophosphamide (CY) and IVIg preconditioning
  - CY to potentially reduce cells that compete for cytokines needed for DSG3-CAART activation/proliferation
  - CY to potentially reduce pathogenic B cells that secrete anti-DSG3-antibodies that may bind and block DSG3-CAART
  - IVIg to potentially reduce anti-DSG3 antibodies that may bind and block DSG3-CAART
  - Some leveling off of persistence with A5 dose
  - CY and IVIg have the potential to provide transient disease improvement, and up to 9 months may be required to assess DSG3-CAART effect

- **Cohort A6m**: 2x A5 dose (1-1.5x10^10 cells)
  - Two A5 infusions administered 3 weeks apart to potentially increase the duration of in vivo exposure and persistence of DSG3-CAART (increase the AUC)
Summary and Conclusion

• Data from the first-in-human trial of DSG3-CAART for mPV demonstrate that doses up to $7.5 \times 10^9$ cells (Cohort A5) were generally well-tolerated with no DLT, including CRS or ICANS > Grade 1, through 07 Sep 2022.

• There was a dose dependent increase in DSG3-CAART persistence through Cohort A4, but a leveling off with Cohort A5.

• The persistence observed in Cohorts A4 and A5 approached the lower end of range that has been observed with CD19 CART therapy plus lymphodepletion for B-cell malignancies\(^1\).

• No clear pattern was observed in changes in anti-DSG3 Ab levels or disease activity through Cohort A4; one subject in Cohort A4 demonstrated a transient improvement in several assessments of efficacy.

• These data warrant further exploration of dosing regimen to potentially further increase in vivo exposure and activity of DSG3-CAART cells:
  • Combination regimen with cyclophosphamide and IVIg pretreatment (Cohort P4).
  • Higher dose with 2 doses of A5 given 3 weeks apart (Cohort A6m).

---

1. The range of persistence observed with CD19 CART therapy in oncology has not been confirmed to be necessary or sufficient for clinical responses in patients with mPV.
Acknowledgements

**Investigators**
- David Porter
- Rob Micheletti
- Joshua Bryer
- Emanuel Maverakis
- Mehrdad Abedi
- Lauren Downing
- Peter Marinkovich
- I. Sinem Bagci
- Wen-Kai Weng
- Alan Zhou
- Jayesh Mehta
- Janet Fairley
- Umar Farooq

**Cabaletta Bio**
- Samik Basu
- Gwen Binder
- Kim Hoffman
- Jenell Volkov
- Daniel Nunez
- Kate Richetti
- Claire Miller
- Yan Li
- Chien-Chung Chen
- Marcia Gaido
- Michael Cooper
- Heather Harte-Hall
- Arun Das
- Steven Nichtberger

**University of Pennsylvania**
- Aimee Payne
- Michael Milone
- Translational and Correlative Studies Laboratory
- Cell and Vaccine Production Facility
31st
EADV CONGRESS
MILAN & ONLINE
7 - 10 SEPTEMBER 2022