CG-806, a First-in-Class Pan-FLT3/Pan-BTK Inhibitor, Exhibits Broad Signaling Inhibition in Chronic Lymphocytic Leukemia Cells

Ekaterina Kim¹, Hongying Zhang², Mariela Sivina¹, Alicia Vaca¹, Philip A. Thompson³, Nitin Jain¹, Alessandra Ferrajoli¹, Zeev Estrov¹, Michael J. Keating¹, William G. Wierda¹, William G. Rios², Michael Andreff³, and Jan A. Burger¹

¹The University of Texas M.D. Anderson Cancer Center, Department of Leukemia, Houston, TX; ²Aptose Biosciences, Inc., San Diego, CA

Introduction

Bruton tyrosine kinase (BTK) inhibitors, such as ibrutinib, have fundamentally changed treatment of chronic lymphocytic leukemia (CLL). However, ibrutinib is not curative and used as a long-term therapy with associated toxicities and the risk of developing drug resistance, which are the most common reasons for treatment discontinuation. Ibrutinib resistance is related to acquired ibrutinib-resistant BTK or PLCG2 mutations. CG-806 is an oral small molecule non-pan-BTK/pant-FLT3 inhibitor. CG-806 was structurally designed to target BTK without binding to C481 residual and target other oncogenic kinases. It is being developed for treatment of CLL/SLL, non-Hodgkin’s lymphomas and myeloid malignancies.

Methods

Peripheral blood mononuclear cells from patients with CLL were cultured for 14 days until outgrowth of nurse-like cells (NLC). Before treatment with inhibitors, non-adherent cells were harvested and re-plated on autologous NLC at a concentration of 1x10⁴ cells/cm². MEC-1 CLL cell line was incubated with escalating doses of CG-806 or ibrutinib for 72 hours. The IC₅₀ of CG-806 and ibrutinib were measured using TAC59 XTT cell proliferation/viability assay. The percentage and absolute number of viable MEC-1 and primary CLL cells were determined by flow cytometry with counting beads after staining with DOC6/propiolactone. For immunoblotting, CLL cells were pre-treated with 806 or ibrutinib for 2 hours and then stimulated with anti-lgM for 15 minutes. CLL cells co-cultured with NLC were treated with inhibitors for 24 hours before assessing B cell receptor (BCR) signaling by immunoblot and CLL3 and CCL4 concentration in the supernatants by ELISA.

Disclosures

Zhang – Aptose Biosciences, Inc (Employment); Thompson – AstraZeneca; Pharmaceutical Research Funding); Amgen (Consultancy and Research Funding); Genentech, Glaxo (Consultancy and Honoraria); Jain – AbbVie, Janssen Pharmaceuticals, Inc. (Consultancy); Pharmacia (Consultancy and Research Funding); Wieland – Genzyme (Consultancy); AbbVie, Actelion, Genentech, Glaxo, GSK, Novartis, Janssen, Juno, Karyopharm, Kite, Lasso, Miragen, Oncpem; Pharmacists; Suneesia, Kenzor (Research Funding); Rice – Aptose Biosciences, Inc (Employment, Equity Ownership and Membership of an Entity’s Board of Directors or Advisory Committee)

CG-806 hinders microenvironmental regulation of CLL B-cell survival

A. CG-806 dose-dependently inhibited viability of primary CLL cells in co-culture with NLC

B. CG-806 decreased adherence of patient-derived NLC

C. CG-806 dose-dependently reduced CCL3, CCL4, CXCL13 in CLL/NLC co-culture

D. CG-806 inhibited SYK, BTK, AKT/S6 and MYC signaling in primary CLL cells in co-culture with NLC

E. CG-806 inhibited BCR/SYK/BTK/ERK, AKT/S6 signaling in primary CLL cells stimulated with anti-lgM

CG-806 is more potent than ibrutinib to induce apoptosis of MEC-1 CLL cells

Conclusions

- CG-806 broadly inhibits BCR signaling in CLL cells, resulting in CLL cell apoptosis and reduced proliferation.
- CG-806 targets elements of the CLL microenvironment, i.e. NLC, and thereby potentially targets pro-survival signals from the microenvironment.
- These findings support further development of CG-806 in B cell malignancies, including CLL patients who are intolerant, refractory or resistant to ibrutinib or other covalent or non-covalent BTK inhibitors.
- CG-806 is currently in a Phase 1a/b trial (NCT0389682) for patients with CLL/NHL B-cell cancers including those intolerant, resistant, or refractory to ibrutinib, other covalent or non-covalent BTK inhibitors, or other therapies.