

NIR spectroscopy for PI detection in all skin tones

Yaniv Cohen PhD Ronnie Klein BSc MBA

Annual Conference

Presenters:

Yaniv Cohen PhD MSc. Ronnie Klein BSc MBA

Disclosure: IR-MED co-founders

Objectives

- Background of the problem
- Solution IR sensing of multiple biomarkers
 - Near IR spectroscopy
 - Scanning beneath the skin surface
 - Blood Flow Meter
 - Personalized measurements
 - Al algorithm
- Optical spectroscopy devices by IR-MED
 - POC, PressureSafe scanners

Background – PI in Patients with Dark Skin Tones

- Research shows that people with dark skin tones tend to have*:
 - Higher PI rates
 - Higher risks of mortality from PI
 - More severe Pls
- Lack of knowledge of PI appearance in dark skin tones:
 - Delays early identification and treatment
 - Results in more severe Pls
 - Increases financial costs for healthcare organizations

It's time for technology!

Solution: IR sensing of multiple biomarkers

1

Multiple biomarkers related to PI development in different skin layers 2

Structural changes in different skin layers

3

Blood flow parameter monitoring in the tissue

Equally effective for all skin tones

For detection of Stage 1 PI and sDTI

Stars in Space and Pressure Injury

Visual light image

of a central region

of the Milky Way

Near infrared (NIR) light image of a central region of the Milky Way

https://www.eso.org/public/images/comparisons/eso1920a/

NIR Spectroscopy in Space

25th Dec. 2021 James Webb space telescope

Diffused Reflectance Optical Spectroscopy

- A non-invasive method that allows in-vivo examination and measurement of the unique optical characteristics of biological tissue
- Optical properties of biological tissue change the spectrum of reflected or transmitted light in accordance with the tissue's structural and chemical composition (chromophore content)
- Chromophores (e.g. collagen, water, oxyhaemoglobin, melanin, etc.)

Near Infrared Spectrum

- Effective for all skin tones (not affected by melanin content)
- Non-invasive
- Harmless light
- Deep penetration into skin layers
- Sensing the invisible invisible data from important physiological parameters (biomarkers) and tissue structure

Increasing penetration depth

Scanning beneath the skin's surface

- Detecting underlying skin surface changes using multiple optical wavelengths
- Scanning at different layer depths
- Detecting structural changes in different skin layers
- Analyzing the tissue content of different layers

Blood Flow Meter

- Blood flow measurement is physiologically and clinically important
- Blood flow in PI is different than in healthy tissue
- Measures blood cell perfusion in the microvasculature of tissues and organs
- PPG , Pulse Wave Velocity, Diffused Correlation Spectroscopy, Doppler Flowmetry (DF)

Tamura, T. "Blood Flow Measurement (5.05)." Comprehensive Biomedical Physics 2014: 91–105. Web.

Personalized measurements

- Personal calibration allows reliable & accurate measurement for each patient
- Per patient acquisition of sample measurement from skin reference area with low risk of PI
- This method overcomes:
 - 1. Skin tone variance between patients
 - 2. Skin structure variance between patients
 - 3. Skin structure variance between different measurement sites on the body

Al algorithm

For detection of PI stage-1 and sDTI

OPTICAL SPECTROSCOPY DEVICES

IR-MED

From research to clinic

POC – Study

- 2 medical centers in Israel
- Only Stage 1 PIs were included in the trial. Higher grades of PI were excluded.
- PI was diagnosed by certified doctors and scanned by the device
- Total of 76 samples were taken from both medical centers
- **Results:** 94.7% accuracy in identification of Stage 1 pressure injuries

PressureSafe 1st Generation

- Scanner and App
- Handheld electro-optic scanner with tablet and App
- Based on LED's (specific wavelengths) and detectors
- Multiple biomarkers and optical blood flow detector
- For use with patients at increased risk of pressure injury
- Personalized medical device
- Currently undergoing useability studies at 2 medical centers in Israel

PressureSafe – advanced technology

*Not yet available for commercial use. Expected US launch: H2/2023

Takeaway message - Equity in Prevention Pl

- Non-invasive IR sensing of multiple biomarkers for accurate results
- Personalized medical device calibrates to each patient's skin
- Scans beneath the skin surface sensing the invisible
- Near Infrared light deep penetration, effective for all skin tones
- Scans in different layers and depths to detect structural changes
- AI machine learning algorithm

References

- https://www.eso.org/public/images/comparisons/eso1920a/
- Tamura, T. "Blood Flow Measurement (5.05)." Comprehensive Biomedical Physics 2014: 91–105. Web.
- https://www.hmpgloballearningnetwork.com/site/wounds/article/5-year-retrospective-study-descriptors-associated-identification-stage-i-and-suspected-deep
- Cohen, Y., Dekel, B.Z., Yuldashev, Z., Blaunstein, N. (2022). NIR-SWIR Spectroscopy and Imaging Techniques in Biomedical Applications—Experimental Results. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol 309. Springer, Singapore. https://doi.org/10.1007/978-981-19-3444-5_11

Thank you!

Yaniv@ir-medical.com

Ronnie@ir-medical.com