β-lactamase characterization of baseline Enterobacterales pathogens from a Phase 3 trial of sulopenem for the treatment of uncomplicated urinary tract infection

Steven I. Aronin, MD¹, Mark G. Wise, PhD², Jayanti Gupta, PhD¹, Michael Dunne, MD^{1,3}, and Sailaja Puttagunta, MD¹ ¹Iterum Therapeutics, Old Saybrook, CT 06475; ²IHMA, Schaumberg, IL 60173, ³Current affiliation: Bill & Melinda Gates Medical Research Institute, Cambridge, MA 02139

ABSTRACT

and tolerability of oral sulopenem etzadroxil/probenecid versus ciprofloxacin in the treatment of adult women with uncomplicated urinary tract infection (uUTI). Here, the β-lactamase content of select Enterobacterales isolates recovered from patients enrolled in this trial was

Enterobacterales isolates with MIC values of $>1 \mu g/mL$ for ceftriaxone, imipenem, meropenem, and/or ertapenem were screened for the presence of bla encoding ESBLs, AmpC β-lactamases, and carbapenemases by multiplex PCR. Detected genes were sequenced and the enzyme variant deduced by comparison to NCBI databases.

The trial enrolled 1671 patients from 3 countries. The microbiologic-modified intent-to-treat (micro-MITT) population included 1071 patients with $\geq 10^5$ CFU/mL of Enterobacterales (1058) or *S. saprophyticus* (13) in the baseline urine culture. 214 of the baseline Enterobacterales isolates from 193 (18.0%) micro-MITT patients met MIC screening criteria for β-lactamase content determination. Enterobacterales were comprised of 8 species, including Escherichia coli [80.4%] and Klebsiella pneumoniae [13.6%]. 38.3% (82/214) of Enterobacterales isolates harbored ≥ 2 β -lactamase-encoding genes. Most Enterobacterales (75.2%; 161/214) carried blaCTX-M alone or in combination with other ESBL/pAmpC/carbapenemases and/or narrow-spectrum enzymes. The CTX-M-encoding genes were predominantly from group 1 (67.7%) or group 9 (29.2%). CTX-M-15 was identified in 56.1% of the isolates that were both

Carbapenemase-encoding genes (blaOXA-48 & blaNDM-1) were noted in 6/214 Enterobacterales; these isolates were from Russia and Ukraine. 21 qualifying isolates tested negative for any resistance genes.

Uncomplicated urinary tract infection in adult females due to ESBL-producing Enterobacterales was common, while uUTI due to carbapenemase-producing Enterobacterales was uncommon, absent in patients from the United States. ESBL-producing isolates harboring CTX-M-15 were often resistant to fluoroquinolones, highlighting co-resistance and the need for new oral antibiotic options with broadspectrum activity for the treatment of uUTI. Sulopenem demonstrated potent activity against multidrug resistant Enterobacterales including

INTRODUCTION

- SURE-1 (IT001-301) was a double-blind, double-dummy, Phase 3 randomized trial that enrolled 1671 ambulatory female adults with uncomplicated UTI (uUTI) and compared sulopenem etzadroxil/probenecid 500 mg/500 mg PO BID x 5 days to ciprofloxacin 250 mg PO BID x 3 days. The primary endpoint was overall (clinical + microbiologic) response in the microbiologic modified intent to treat (micro-MITT) population with baseline uropathogens either susceptible or resistant to the comparator, ciprofloxacin (micro-MITTS and micro-MITTR populations, respectively), at the Test-of-Cure (Day 12) Visit.
- The study presented here reports the characterization of β-lactamase content among baseline Enterobacterales isolates that met the predefined MIC criteria for bla encoding extended-spectrum β-lactamase (ESBL), AmpC βlactamases, and carbapenemases

METHODS

- All Enterobacterales isolates were evaluated by MIC threshold to determine if β -lactamase screening was warranted.
- Qualifying MIC thresholds and specific β -lactamase enzymes screened for by multiplex PCR are outlined in Table 1
- · All detected *bla* genes were amplified with extragenic primers and sequenced in their entirety and compared to databases maintained at NCBI to determine the variant, with the exception of:
- SHV and TEM
 - blaTEM and blaSHV were screened by limited sequencing to identify genes encoding TEM-type ad SHV-type enzymes containing amino acid substitutions common to ESBLs at the following positions:
 - SHV a.a. 146, 179, 238, 240; TEM a.a. 104, 164, 238, 240
 - Based on the presence/absence of these signature amino acids, TEM and SHV enzyme variants were reported as -ESBL or -OSBL (original spectrum β-lactamase)
- Chromosomal AmpC genes intrinsic to particular species
- ACT/MIR detected in Enterobacter spp.,
- CMY detected in Citrobacter spp.,
- ACC in Hafnia alvei,
- DHA detected in Morganella morganii

RESULTS

Table 1: β-lactamase testing qualifications and specific enzymes screened for in Enterobacterales pathogens recovered from SURE-1 patients with uUTI

Screening Qualifications

- Ceftriaxone MIC > 1 µg/mL,
- Imipenem MIC > 1 µg/mL (Proteus species, Providencia species, M. morganii MIC >4 µg/mL),
- Meropenem MIC > 1 µg/mL, OR
- Ertapenem MIC > 1 µg/mL

Qualifying Isolates Screened for by Multiplex PCR:

- bla encoding ESBLs
- TEM, SHV, CTX-Ms (5 subtypes), GES, VEB, PER
- AmpC β-lactamases
- ACC, ACT, CMY, DHA, FOX, MIR, MOX
- Carbapenemases
- KPC, OXA-48 group, IMP, VIM, NDM, SPM, GIM

Table 2: Baseline Enterobacterales isolates meeting MIC screening criteria

Species	screening emen	G		
Klebsiella pneumoniae29United States80Enterobacter cloacae4Ukraine34Klebsiella aerogenes4Citrobacter freundii2Citrobacter koseri1Morganella morganii1	Species		Region	Number of Isolates
pneumoniae 29 States 80 Enterobacter cloacae 4 Ukraine 34 Klebsiella aerogenes 4 Citrobacter freundii 2 Citrobacter koseri 1 Morganella morganii 1	Escherichia coli	172	Russia	100
Klebsiella aerogenes 4 Citrobacter freundii 2 Citrobacter koseri 1 Morganella morganii 1		29		80
Citrobacter freundii 2 Citrobacter koseri 1 Morganella morganii 1	Enterobacter cloacae	4	Ukraine	34
Citrobacter koseri 1 Morganella morganii 1	Klebsiella aerogenes	4		
Morganella morganii 1	Citrobacter freundii	2		
	Citrobacter koseri	1		
Providencia stuartii 1	Morganella morganii	1		
	Providencia stuartii	1		
Total 214 Total 214	Total	214	Total	214

RESULTS

Table 3: MIC results for sulopenem and comparators against β-lactamase Table 4: Summary of β -lactamase enzymes detected among baseline Enterobacterales, SURE-1 uUTI patients producing strains of Enterobacterales, SURE-1 uUTI patients

* Value represents number and percentage of isolates at or below given MIC; ** Value represents number and percentage of isolates at or above given MIC; ***E.coli = 172 isolates, two with missing MIC

Table 5: Select characteristics of enzymes identified from

isolates of SURE-1 patients with uUTI

Pathogen (No; % of all Enterobacterales)/ Results	No. of isolates	Pathogen (No; % of all Enterobacterales)/ Results	No. of isolates
E. coli (172; 80.4)		K. pneumoniae (continued)	
CMY-2	9	CTX-M-15; NDM-1*	1
CMY-2; CTX-M-15	1	CTX-M-15; OXA-48*; SHV-OSBL; TEM- OSBL	1
CMY-2; CTX-M-15; TEM-OSBL	4	CTX-M-15; SHV-OSBL	7
CMY-2; TEM-OSBL	2	CTX-M-15; SHV-OSBL; TEM-OSBL	8
CMY-2-TYPE; CTX-M-15; TEM-OSBL	1	CTX-M-27; SHV-OSBL	1
CTX-M-1	1	CTX-M-164; SHV-OSBL; TEM-OSBL	1
CTX-M-1-TYPE; TEM-OSBL	1	NDM-1*; SHV-OSBL	1
CTX-M-3	4	OXA-48*; SHV-OSBL	3
CTX-M-3; TEM-OSBL	2	SHV-ESBL; TEM-OSBL	1
CTX-M-14	9	SHV-OSBL; TEM-OSBL	1
CTX-M-14; TEM-OSBL	1	No acquired β-lactamases detected	1
CTX-M-15	50	E. cloacae (4; 1.9)	
CTX-M-15; TEM-OSBL	23	ACT-TYPE	1
CTX-M-27	26	ACT-TYPE; CTX-M-15; TEM-OSBL	2
CTX-M-27; TEM-OSBL	7	CTX-M-15; TEM-OSBL	1
CTX-M-27; TEM-TRUNC	1	C. freundii (2; 0.9)	
CTX-M-55	3	CMY-2-TYPE	1
CTX-M-55; TEM-OSBL	4	CMY-2-TYPE; CTX-M-15; TEM-OSBL	1
CTX-M-65; TEM-OSBL	1	M. morganii (1; 0.5)	
CTX-M-206	3	CTX-M-15; DHA-TYPE; TEM-OSBL	1
CTX-M-216	1	K. aerogenes (4; 1.9)	
TEM-OSBL	4	No acquired β-lactamases detected	4
No acquired β-lactamases detected	14	C. koseri (1; 0.5)	
. pneumoniae (29; 13.6)		No acquired β-lactamases detected	1
CTX-M-3; SHV-OSBL; TEM-OSBL	1	P. stuartii (1; 0.5)	
CTX-M-14; SHV-OSBL; TEM-OSBL	1	No acquired β-lactamases detected	1
CTX-M-15; DHA-TYPE; SHV-OSBL; TEM-OSBL	1		

CONCLUSIONS

- Uncomplicated UTI in ambulatory adult females due to β-lactamase-producing Enterobacterales was common
- Uncomplicated UTI due to carbapenemase-producing Enterobacterales was uncommon, absent in patients from the United States
- ESBL-producing isolates harboring CTX-M-15 were often resistant to fluoroquinolones, highlighting co-resistance and the need for new oral antibiotic options with broad-spectrum activity for the treatment of uncomplicated UTI
- Sulopenem demonstrated potent activity against drug resistant Enterobacterales, including β-lactamase-producing strains and should be studied further for the treatment of uncomplicated UTI

