Targeting of misfolded, pathogenic TDP-43 with rationally designed antibodies

Neil Cashman1,2,3, Sarah Louadj1,2, Beibei Zhao1,2, Andrei Roman1,2, Ebrima Gibbs1,2, Anke Dijkstra4, Johanne Kaplan3
1Djavad Mowafaghian Centre for Brain Health, 2University of British Columbia, Vancouver BC, 3ProMIS Neurosciences, Toronto ON;
4Amsterdam University Medical Center, Amsterdam, Netherlands

INTRODUCTION

Background

• Misfolded protein aggregates of TDP43 are a pathological hallmark of ALS and FTLD
• The pathological infiltration of TDP43 pathology in ALS and FTLD shows a spreading pattern consistent with progressive dissemination from source to receptor
• Misfolded TDP43 aggregates are toxic to neural cells
• Antibodies to the A53T mutant allele of TDP43 have been demonstrated in cell culture and animal models

• We have previously reported that pathogenic TDP43 induces misfolding of SOD1 and we recently determined that a tryptophan (Trp68) in the N-terminal domain (NTD) participates in the cross-fermenting disease process

• We have previously reported that pathogenic TDP43 includes misfolding of SOD1 and we recently determined that a tryptophan (Trp68) in the N-terminal domain (NTD) participates in the cross-fermenting disease process

Goal

Generate antibodies selective for misfolded disease-associated TDP-43 through immunization of rabbits with an N-terminal domain linear epitope including Trp68 (anti-NTD).

METHODS

Surface Plasma Resonance

TDP43 NTD (0.5 mg/ml) was immobilized on sensor chips at a very low concentration. The NTD epitope is recognized by antibodies in the picomolar range. Rabbit mAbs to misfolded TDP-43 NTD react with mislocalized, aggregated ΔNLS-TDP-43, while control antibodies do not recognize ΔNLS-TDP-43.

Western Blot:

SDS and Native gels were carried out using the Novex Bis-Tris system. Western blotting was carried out using the SuperSignal West Femto (Thermo Scientific, USA) substrate with donkey anti-Rabbit IgG HRP-labelled secondary antibodies (GE Healthcare Life Sciences, USA). TDP-43 NTD (0.5 mg/ml) was denatured by liquid chromatography instrument on a Superdex 75 (10/300) HPLC column (GE Healthcare, USA). The SuperSignal West Femto (Thermo Scientific, USA) substrate with donkey anti-Rabbit IgG HRP-labelled secondary antibodies (GE Healthcare Life Sciences, USA) was used according to the manufacturer’s instructions.

Immunization with a predicted NTD epitope of misfolded TDP-43 produced a family of antibodies sensitive to solvent exposure of NTD TDP43 (anti-NTD)

REFERENCES

ACKNOWLEDGMENTS

• The authors would like to thank Biogen and by the National Institute of Neurological Disorders and Stroke (NINDS) and National Institute of Neurological Disorders and Stroke (NINDS) for support.

CONCLUSION

• Immunization with a predicted NTD epitope of misfolded TDP-43 produced a family of antibodies sensitive to solvent exposure of NTD TDP43 (anti-NTD)

• Anti-NTD displayed high epitope binding affinity in the picomolar range

• Selecting antibodies with high specificity for elemental pathogenic TDP43 aggregates in a HeLa cell model, including Trp68, normal, essential TDP43 function

• The same antibody did not show binding to physiological stress granules = preserved stress protection function

• Blocking of TDP43 in human FTD and ALS samples confirmed reactivity with pathological TDP43

• These antibodies may find utility in biomarker and immunotherapy applications for TDP-43 associated diseases

WM = White matter GM = Grey matter