Characterizing the Epigenetic Landscape Identifies Putative Therapeutic Targets in the Pancreatic Cancer Chimera

Divya Sood MD, Kathryn Austgen PhD
Chris Fiore PhD, David Orlando PhD, Brian Johnston MS, Sofija Miljovska MS, Cindy Collins MS, Randall French PhD, Yu Shi PhD, Tony Hunter PhD, Tracey Lodie PhD, Andrew Lowy MD

Wednesday, October 25, 2017
Disclosures

Kathryn Austgen PhD, Chris Fiore PhD, David Orlando PhD, Brian Johnston MS, Sofija Miljovska MS, Cindy Collins MS, and Tracey Lodie PhD are current or former employees of Syros Pharmaceuticals, Inc. and may have an equity interest in the company.
Super-enhancers

- Large non-coding regions made up of clusters of transcription regulators
 - Rich acetylation of Histone H3 lysine 27 (H3K27ac) indicates high levels of super enhancer activity
- Drive expression of genes that
 - define cell type differentiation
 - affect immune cell functional states
- Play a role in regulation of tumor promoting or inhibiting genes
Pancreatic Cancer

• Highly lethal
 – Currently the 3rd leading cause of cancer-related deaths in US (surpassed breast cancer in 2016)
 – Expected to surpass colon cancer to become the 2nd leading cause this decade

• Limited therapeutic options
 – Most present metastatic (no surgical options)
 – Nucleoside analogs (gemcitabine, 5-FU)

• Characterized by immunosuppressive microenvironment
 – Tumor-promoting macrophages
 – Lack of cytotoxic T cells
Super-enhancer analysis can be used to:

– identify key drivers of oncogenesis in the epithelial, stromal, and immune cell populations within pancreatic cancer

– compare and select appropriate pre-clinical models of pancreatic cancer
Methods

Normal pancreas, primary PDAC, PDX tumors, PDX-derived organoids, PDAC cell lines

Dissociated and sorted into whole tumor, and epithelial, stromal, and immune populations

ChipSeq to identify SE regions (rich in H3K27ac)

SE regions linked to specific genes

Genes linked to signaling pathways with Ingenuity Pathway Analysis
Primary PDAC samples have unique epigenetic landscapes compared to Normal Pancreas

More acetylated in PDAC than Normal

More acetylated in Normal than PDAC

Define “Pancreas”
There is variable maintenance of the epigenetic landscape across PDAC models.
LIF1 is the most highly acetylated locus in PDAC versus normal and is maintained in model systems

- Leukemia Inhibitory Factor (LIF)
- Interleukin cytokine involved in cell differentiation and cell growth
- JAK/STAT, MAPK, PI3K pathways
LIF blockade by neutralizing antibody enhances the chemotherapy efficacy and prolongs survival of KPC mice.
LIF blockade targets the cancer stem cell population and inhibits tumor growth

Nikki Lytle, Tannishtha Reya
Many of the genes with the highest differential SE status in PDAC vs Normal are associated with immune signaling pathways.

Majority of genes with SE status in primary PDAC that are lost in PDX, organoid & cell line models are associated with immune signaling pathways.

- i.e. Th1/2 activation, antigen presentation, IL10 signaling, macrophage activation.

- Consistent with the known lack of immune component in the models (only epithelial cells).

- Many of these immune-related genes are maintained in the GEMM syngeneic model which represents a validation path for the role of these genes in immune-driven oncogenesis.
SE signatures of M1 and M2 macrophages give insight into the functional state of CD14+ cells from patient samples.

38 most differential SE (between M1 and M2 signatures)

M1 Signature STDs

Patient CD14+ Cells

M2 Signature STDs
Conclusions

• SE analysis can define key genes in the epithelial, stromal, and immune populations that may drive pancreatic cancer oncogenesis

• There is variable maintenance of super-enhancer status of these genes across preclinical models of pancreatic cancer

• Epigenetic understanding of macrophage functional state provides insight into the heterogeneity of myeloid component in the tumor microenvironment
Acknowledgements

UC San Diego
Andrew Lowy, MD
Alex Cazes, PhD
Randall French, PhD
Dawn Jaquish
Francisco Mercado, PhD
Evangeline Mose
Shweta Sharma, PhD

Syros Pharmaceuticals
Tracey Lodie, PhD
Kathryn Austgen, PhD
Cindy Collins, MS
Chris Fiore, PhD
Brian Johnston, MS
Sofija Miljovska, MS
Prabitha Natarajan, PhD
David Orlando, PhD
Katarzyna Piotrowska, MS

Cancer Centers Council (C3)
Tony Hunter, PhD
Yu Shi, PhD
Tannishtha Reya, PhD
Nikki Lytle, PhD
Jeevisha Bajaj, PhD

Funding Support
NCI/NIH Award Number T32-CA121938
Cancer Therapeutics Training (CT2) Fellowship Program
Stand Up To Cancer – Lustgarten Foundation
Cancer Research UK