Corporate Presentation

1

December 2020

ABEONA THERAPEUTICS

Safe Harbor Statement

This presentation contains certain statements that may be forward-looking within the meaning of Section 27a of the Securities Act of 1933, as amended, including statements relating to the product portfolio and pipeline and clinical programs of the company, the market opportunities for all of the company's products and product candidates, and the company's goals and objectives. These statements are subject to numerous risks and uncertainties, including but not limited to the risks detailed in the Company's Annual Report on Form 10-K for the year ended December 31, 2019, including risks associated with the ongoing coronavirus/COVID-19 pandemic (as further explained in the Company's "Stakeholder Letter in Response to the COVID-19 Pandemic" dated March 27, 2020) and other reports filed by the company with the Securities and Exchange Commission.

This presentation does not constitute an offer or invitation for the sale or purchase of securities or to engage in any other transaction with Abeona Therapeutics or its affiliates. The information in this presentation is not targeted at the residents of any particular country or jurisdiction and is not intended for distribution to, or use by, any person in any jurisdiction or country where such distribution or use would be contrary to local laws or regulations. The Company undertakes no obligations to make any revisions to the forward-looking statements contained in this presentation or to update them to reflect events or circumstances occurring after the date of this presentation, whether as a result of new information, future developments or otherwise.

A Fully-Integrated Gene & Cell Therapy Company Focused on Rare Diseases With No Approved Treatments

COMPREHENSIVE GENE & CELL THERAPY CAPABILITIES Late-Stage First-to-Market Opportunities BREAKTHROUGH THERAPY WITH GENE CORRECTED CELL THERAPY AAV9 AND PROPRIETARY AAV (AIMTM) PROGRAMS GENE & CELL THERAPY EXPERTISE AND MANUFACTURING CAPABILITIES

ROBUST PIPELINE OF CLINICAL STAGE AND PRECLINICAL PROGRAMS

- EB-101 breakthrough therapy in pivotal Phase 3 study for RDEB, supported by evidence of multi-year wound healing data
- AAV gene therapies with early signs of clinical benefit in MPS IIIA and clear biologic effect in MPS IIIB in Phase 1/2 trials
- Novel AIM[™] AAV capsid platform: in vivo proof of concept data for efficient intravitreous and subretinal delivery in NHP as well as tropism for other organs, including CNS
- State-of-the-art cGMP manufacturing for clinical and commercial grade gene and cell therapy products
- \$104M in cash, cash equivalents, receivables and marketable securities (Sept 30, 2020)

Robust Pipeline

Abeona Therapeutics Corporate Presentation, December 2020

EB-101: Gene-Corrected Cell Therapy for RDEB

REGENERATIVE MEDICINE ADVANCED THERAPY **DESIGNATION (FDA)**

Epidermolysis Bullosa (EB):

Devastating Inherited Connective Tissue Disorder

Recessive Dystrophic Epidermolysis Bullosa (RDEB):

- Most severe form of EB
- Primarily characterized by skin blisters and erosions
- Caused by mutations in COL7A1 gene, which encodes type VII collagen
- Est. 2,500 U.S. patients

Up to 80% of patient's body covered in wounds, leading to:

- Severe pain and widespread scarring
- Debilitating and life-threatening systemic complications
- Up to 90% of RDEB patients are at risk for squamous cell carcinoma (SCC)

50% of generalized severe patients die before 35

The lack of functioning anchoring fibrils in RDEB patients leads to skin blistering and tears with minor trauma

Recognizing the Full Burden of RDEB

Clinical

Large, chronic wounds comprise the main clinical burden in RDEB and are correlated with pain.

Up to 90% of RDEB patients are at risk of developing SCC.

Economic

Annual wound dressing cost per patient is up to \$245,000.

U.S. families characterized the economic impact of managing RDEB as "high" or "severe."

Humanistic

Many patients have anxiety and depression.

67% of divorced parents reported RDEB as a major/primary factor.

Tang et al. Society for Pediatric Dermnatology 2020 Poster Presentation

Recurrent and Chronic Wounds Have Distinct Time Courses

Time to heal (6 weeks) Time to re-blister (3 weeks)

Natural history of chronic wounds in patients with recessive dystrophic epidermolysis bullosa; Solis, D. et al.; Journal of Investigative Dermatology, Volume 137, Issue 5, S37

Recurrent Wounds Over Time (N=25)

Large, Chronic Open Wounds Cause Greatest Pain and Itch

Sequentially Photographed Wounds: N=25 patients, 62 wounds

	≤19 cm ²	20-39 cm ²	≥40 cm ²	Mean Size	Mean Duration	
Recurrent	Recurrent 64%		15%	26 cm ²	5 years	
Chronic Open	27%	20%	53%	118 cm ²	7 years	

Natural history of wounds in patients with recessive dystrophic epidermolysis bullosa; Teng et al., Abstract #251; Society of Investigational Dermatology Annual Meeting, 2019

EB-101: Ex-Vivo Autologous Gene Corrected Cell Therapy

EB-101 Pivotal Phase 3 VIITALTM Study

Study Design	 Multi-center, randomized trial led by Stanford University 10-15 RDEB patients, with approx. 30 chronic wound sites treated in total Follow-up visits 1-6 months, then in a long-term follow-up protocol until year 5
Study Endpoints	 Proportion of wounds with >50% healing, comparing treated with untreated wound sites on the same patient Patient's global impression of change in pain from baseline Patient-reported outcomes assessing pain during: Dressing changes Pain impact Physical function

Enrollment completion expected in first half of 2021

VIITALTM Study Supported by EB-101 Phase 1/2a Study for RDEB

Study Description	 A Phase 1/2a Single Center Trial of Gene Transfer for Recessive Dystrophic Epidermolysis Bullosa (RDEB) using EB-101 for autologous tissue transplantation
Study Design	 Open-label, interventional study Seven patients with RDEB (ages 18 to 45 years) Follow-up visits at 1-12 months post treatment; yearly thereafter until year 5

- Phase 1/2a study addressed wounds of increasing severity and complexity
- Study participants had challenging wounds representative of those most troublesome for the RDEB population
- Learnings from program provided essential guidance for future wound treatment, de-risked Phase 3 study
- Potential to address most wounds, regardless of size or duration

EB-101 Treated Large, Chronic Wounds in a Phase 1/2 Study

9 months

Baseline

Treated wound Treated wound Untreated wound

Durable wound healing

- Healing lasted for 3+ to 5+ years after treatment
- Wound healing of large wounds was associated with no pain

Favorable safety profile 5 years after treatment

 Longest safety follow up of any gene therapy in development for RDEB

Evidence of treating the underlying cause

 Continuous Type VII collagen expression seen 2+ years after treatment

Eichstadt et al. JCI Insight 2019

EB-101 Restored Collagen VII that Forms Functional Anchoring Fibrils Phase 1/2 Study Results

Green line shows collagen expression post-treatment

EB-101 Demonstrated Durable Efficacy

Phase 1/2 Study Results

Participant	Site	Location	Wound Age	3 months	6 months	12 months	2 years	3 years	4 years	5 years
			(years)	0 - 00 - 00	0		2 9000	, juit	• ,	.,
ŀ	A	R distal forearm	>5							
	в	L forearm	>5							
1	С	R proximal forearm	>5							
· · [D	R shoulder	>5							
[E	Larm	4							
	z	Rarm	Induced							
	A	Central chest	>5							
[в	L shoulder	>5							
2	С	R forearm	3-5							
- E	D	R posterior shoulder	>5							
[E	Lower back	>5							
	z	R upper chest	Induced							
	Α	R lateral hand	3-5							
[в	R medial hand	3-5							
[С	L ventral foot	3-5							
3	D	L hand	3-5							
	E	R foot	3-5							
	z	L ventral foot	Induced							
	A	L distal forearm	>5							
1	в	L medial forearm	>5							
	с	L proximal forearm	>5							
- 4	D	R lateral forearm	>5							
1	Е	R distal forearm	>5							
1	z	R medial forearm	Induced							
	A	L upper arm	16							
1	в	L upper arm	16							
_ [с	R upper arm	16							
5	D	R upper arm	16							
1	Е	R upper arm	16							
1	F	R upper arm	16							
	Α	R lateral back upper	20							
	в	R middle back upper	20							
	С	R medial back upper	20							
6	D	R lateral, back lower	20							
	Е	R middle back lower	20							
	F	R medial back lower	20							
	Α	R back corner	20							
	в	R lateral outer leg	20							
	С	R Back central	20							
7	D	R Back medial	20							
	Е	R foot front anterior	20							
1	F	Back upper corner	20							

- Enrolled patients with large wounds not eligible for clinical trials with other gene therapies in development
- Wounds up to 400 cm² and open 3-20 years

Abeona Therapeutics Corporate Presentation, December 2020

Proportion of Wounds with \geq 50% and \geq 75% Healing Phase 1/2 Study Results

Figure 3. Wound healing in treated and untreated wounds. Summary of treated wounds and untreated control wounds that achieved ≥50% wound healing (A) and wounds that achieved ≥75% wound healing (B) at designated time points after treatment, as assessed by Investigator Global Assessment. Black bars represent treated sites; light gray bars represent untreated control wounds.

Average wound area healed per patient was 130 cm² and 120 cm² (up to 157 cm²) at 3- and 6-months, respectively

(Note: healed area was calculated based on minimum % healing per wound site, e.g. 50% used for wound sites that healed ≥ 50%)

Eichstadt et al. JCI Insight 2019

ABO-102* and ABO-101 Clinical Programs for MPS III

ORPHAN DRUG DESIGNATION (FDA)

ORPHAN DRUG DESIGNATION (EU)

RARE PEDIATRIC DISEASE DESIGNATION (FDA)

Fast Track Designation (FDA)

REGENERATIVE MEDICINE Advanced Therapy Designation* (FDA)

PRIORITY MEDICINES DESIGNATION* (EMA)

Sanfilippo Syndrome (MPS III)

Inherited monogenic disorders causing lysosomal enzyme deficiency

- Global incidence varies by regions and it is estimated 0.17-2.35 per 100,000 births^{*}
- Two most common forms categorized by deficient enzymes:
 - MPS IIIA (SGSH), MPS IIIB (NAGLU)
- Abnormal accumulation of glycosaminoglycans (GAGs; heparan sulfate (HS))
- Language and cognitive decline, behavioral abnormalities, seizures, sleep disturbances
- Most children with MPS III have only ~60% of typical cognitive capacity by age 3 years
- 70% of children with MPS III do not survive to age 18 years

No approved treatments available

Normal cell

Cell with lysosome deficiency

*Zelei et al. 2018. Orphanet Journal of Rare Diseases

ABO-102 and ABO-101: AAV Gene Therapies for MPS IIIA and MPS IIIB Mechanism of Action

Phase 1/2 Open-label, Dose-escalation Clinical Trials in MPS IIIA and IIIB Study Design

	transpher Astudy (ABT-001)	transpher Bstudy (ABT-002)				
Study Description	 Single IV dose of ABO-102 (scAAV9.U1.hSGSH) for MPS IIIA 	 Single IV dose of ABO-101 (rAAV9.CMV.hNAGLU) for MPS IIIB 				
Enrollment Status	 Cohort 1: 5 x 10¹² vg/kg (n=3) Cohort 2: 1 x 10¹³ vg/kg (n=3) Cohort 3: 3 x 10¹³ vg/kg (n= 11, up to 16) 	 Cohort 1: 2 x 10¹³ vg/kg (n=2*) Cohort 2: 5 x 10¹³ vg/kg (n=5) Cohort 3: 1 x 10¹⁴ vg/kg (n=2, up to 8) 				
Primary Endpoints	 Neurodevelopmental scores post treatment vs. untreated patients enrolled in natural history studies based on Mullen Scales of Early Learning (MSEL) Product safety 					
Secondary Endpoints	 Behavior evaluations, quality of life, enzyme activity, heparan sulfate levels, and brain and liver volume 					
	Enrollment completion expected in the first quarter of 2021					

*Clinical study protocol states 3 subjects in Cohort 1; however, due to exceptional circumstances and following robust safety profile and positive review from DSMB, trial was cleared in Europe to advance to Cohort 2 dose

Neurocognitive Development of Youngest Patients Preserved 18-24 months Post Treatment compared with Natural History

Black Dashed Line: Expected development for children without disease

Black Solid Line: Typical developmental pattern for children with MPS IIIA (natural history)

• Gray Shaded Area: Variability from patient-to-patient differences and measurement error

Truxal *et al, Mol Genet Metab,*Shapiro *et al, J Pediatrics,*Burhman *et al, J Inherit Metab Dis*Wijburg *et al,* WORLD Symposium, 2018

Post-treatment Improvement in Disease-Specific CNS Biomarkers in MPS IIIA and MPS IIIB

No Patients	Screening	Month 1	Month 6	Month 12	Month 24
Cohort 1	3	3	3	2	2
Cohort 2	3	3	3	3	3
Cohort 3	8	8	8	8	4

ABO-102 showed rapid, dose-dependent, and sustained reduction in CSF heparan sulfate

No Patients	Screening	Month 1	Month 6	Month 12	Month 24
Cohort 1	2	2	2	2	1
Cohort 2	3	4	1		

ABO-101 showed improvement in CSF heparan sulfate

Post-treatment Reduction in Liver Volume in MPS IIIA and IIIB

reduction in liver volume post treatment

NHS data: Truxal et al, 2016, Mol Genet Metab

liver volume post treatment

Consistent Safety and Clinical Benefit in Phase 1/2 Studies with ABO-102 and ABO-101

ABO-102 was well-tolerated

- No infusion reactions
- No treatment-related SAEs
- No clinically significant AEs 0.5-50 months (n=16)

Preliminary evidence of clinical benefit

- Preservation of neurocognitive development in the 3 young patients treated <30 months of age in Cohort 3 (18-24 mos. of follow-up)
- Rapid and sustained, dose-related reduction in disease-specific biomarkers (e.g. heparan sulfate in cerebrospinal fluid and liver volume)

ABO-101 was well-tolerated

- No infusion reactions
- No treatment-related SAEs
- No clinically significant AEs 3-31 months (n=9)

Clear biologic effect

- Decreased CSF HS levels (up to 12 mos.)
- Reduction in plasma and urine HS and GAGs
- Reduction in liver volume
- Neurological assessments pending resumption of visits post-COVID

In-House GMP Manufacturing

Fully-Integrated, Independent, and Scalable cGMP Manufacturing

Control of supply chain, including timelines and cost

- 26,000 sq. ft multi-purpose facility in Cleveland
- Scalable cGMP capacity
- State-of-the-art laboratories to support CMC development for process and analytics
- Experienced and trained staff in Quality, Validation, Process Development, and Assay Development

Clinical and commercial grade manufacturing capability

- EB-101 Phase 3 manufacture ongoing; retrovirus manufacturing in late stage development
- Scalable capacity to support EB-101 commercial launch
- 200L AAV manufacturing GMP upstream capacity; process development for 500L underway
- Supportive of development programs, capable of clinical and commercial AAV production

Anticipated Milestones

EB-101

- Complete enrollment in pivotal Phase 3 VIITAL[™] study in H1 2021, depending upon impact from COVID-19 pandemic
- Topline results from VIITAL[™] study in late-2021

ABO-102 and ABO-101 (AAV-based Gene Therapies)

- Complete enrollment in ABO-102 MPS IIIA and ABO-101 MPS IIIB studies in Q1 2021
- Updated neurocognitive data from MPS IIIA and clinical data from MPS IIIB studies in Q1 2021
- Update on U.S. regulatory pathway for ABO-102 in MPS IIIA

A Fully-Integrated Gene & Cell Therapy Company Focused on Rare Diseases With No Approved Treatments

COMPREHENSIVE GENE & CELL THERAPY CAPABILITIES Late-Stage First-to-Market Opportunities BREAKTHROUGH THERAPY WITH GENE CORRECTED CELL THERAPY AAV9 AND PROPRIETARY AAV (AIMTM) PROGRAMS GENE & CELL THERAPY EXPERTISE AND MANUFACTURING CAPABILITIES

ROBUST PIPELINE OF CLINICAL STAGE AND PRECLINICAL PROGRAMS

- EB-101 breakthrough therapy in pivotal Phase 3 study for RDEB, supported by evidence of multi-year wound healing data
- AAV gene therapies with early signs of clinical benefit in MPS IIIA and clear biologic effect in MPS IIIB in Phase 1/2 trials
- Novel AIM[™] AAV capsid platform: in vivo proof of concept data for efficient intravitreous and subretinal delivery in NHP as well as tropism for other organs, including CNS
- State-of-the-art cGMP manufacturing for clinical and commercial grade gene and cell therapy products
- \$104M in cash, cash equivalents, receivables and marketable securities (Sept 30, 2020)