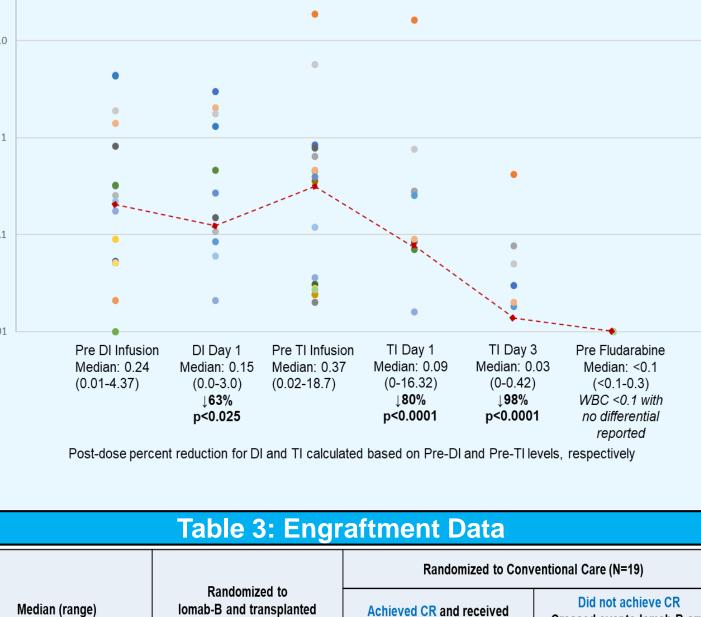
Rapid reduction of peripheral blasts in older patients with refractory acute myeloid leukemia (AML) using reinduction with single agent anti-CD45 targeted iodine (¹³¹I) apamistamab [lomab-B] radioimmunotherapy in the phase III SIERRA trial.

Benjamin Tomlinson¹, Vijay Reddy², Mark S. Berger², Jennifer Spross², Renee Lichtenstein², Boglarka Gyurkocza³

¹ University Hospitals Case Medical Center, Cleveland, OH, ²Actinium Pharmaceuticals, New York, NY, ³ Memorial Sloan Kettering Cancer Center, New York, NY


Poster Number: AML-287 2019 SOHO Annual Meeting September 11 – 14, 2019 Houston, Texas

Background & Rationale

SIERRA trial is a prospective, The randomized, phase 3, open-label, ongoing multicenter trial for patients aged \geq 55 years with active, relapsed/refractory (R/R) AML evaluating allogeneic hematopoietic cell transplantation (HCT) versus conventional (CC). Recent preliminary data care demonstrated robust donor engraftment in all patients treated with Iomab-B (Agura et al, Blood 2018 132:1017) despite active disease. Rapid peripheral blast clearance is predictive of CR and RFS after cytotoxic chemotherapy for AML (Elliot et al, Blood 2007 110:4172; Gianfaldoni et al, BJH 2006 134:54). In the present study we characterize the anti-leukemic effect and rate of peripheral disease reduction by single-agent lomab-B.

(0.01 - 4.37)

Treatment

engraftment following HCT may be related to myeloablation and anti-leukemic activity by single agent lomab-B prior to RIC.

hypothesize

We

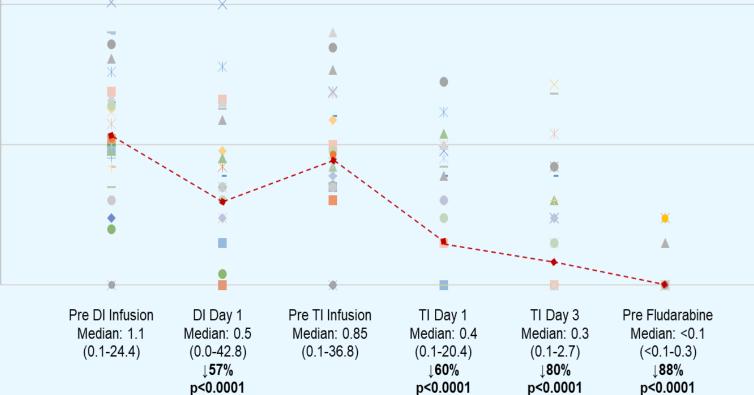
Hypothesis

that

successful

(0.1 - 24.4)

Methods Patients are randomized to receive lomab-B and HCT or to a CC therapy including approved targeted agents followed by HCT if in remission. Majority of patients (79%) in the CC arm did not achieve CR and the study allowed crossover to receive lomab-


Results

Data were evaluated for the first 25% of patients (N = 38). 29 patients received Iomab-B, either directly (N = 19) or via crossover (N = 10). Median baseline marrow blasts were 30% (4-74) for lomab-B and 24% (6-70%) for CC, which increased to 45% (10-70%) at crossover. Peripheral blast data was available in 16 patients (Iomab-B 7, Crossover 9). By day 3 post-Iomab-B, blasts were reduced by 98% with 100% reduction by day 8 (assuming 0% blasts due to lack of differential at WBC 0.1). All patients engrafted with ANC at a median of 13 days (9-22 days). Patients treated with hydroxyurea versus without were analyzed together as well as separately and showed similar results. One patient received hydroxyurea post-Iomab-B therapeutic infusion.

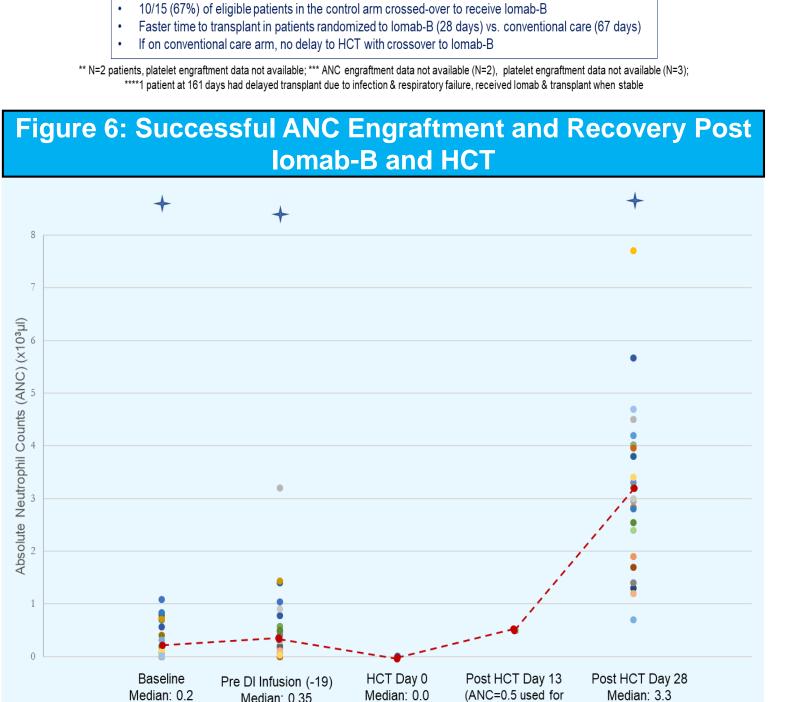

(Pre DI)	(0.1 – 24.4)		(0.05 – 3.33)		(0.01 – 4.37)		Median (range)	lomab-B and transplanted (N=18/19)^	Achieved CR and received standard of care transplant	Did not achieve CR Crossed over to lomab-B arm
Day 1 Post	0.5	57%	0.15	67%	0.15	63%			(N=4)	and transplanted (N=10/15) ^^
Dosimetry (D1)	(N=29) (0.0 – 42.8)	(p < 0.0001)	(N=20) (0.00 – 1.8)	(p < 0.0001)	(N=13) (0.0 – 3.0)	(p < 0.02)	Days to ANC Engraftment	13 (9-22)***	Not collected	13 (9-20)
Pre Therapy	0.85		0.33		0.37					
Infusion (Pre TI)	(N=28) (0.1 - 36.8)	-	(N=23) (0.08 – 1.2)	-	(N=16) (0.02 – 18.7)	-	Days to Platelet Engraftment	16 (13-26)***	Not collected	17 (10-20)**
Day 1 Post Therapy (T1)	0.4 (N=28) (<0.1 – 20.4)	60% (p < 0.0001)	0.1 (N=14) (0.00 – 1.02)	<mark>81%</mark> (p < 0.0001)	0.09 (N=11) (0 – 16.32)	80% (p < 0.0001)	Full Donor Chimerism (>95% prior to day 100)	17/18 (1 patient 65% donor)	n/a	<mark>9/10</mark> (1 patient 86% donor)
Day 3 Post Therapy (T3)	0.3 (N=26) (<0.1 – 2.7)	80% (p < 0.0001)	<mark>0.03</mark> (N=13) (0.00 – 0.11)	<mark>90%</mark> (p < 0.0001)	0.03 (N=8) (0 - 0.42)	<mark>98%</mark> (p < 0.0001)	Days to HCT (Post Randomization)	28 (23-38)	67 (66-86)	66 (57-161) ^{****}
Day 8 Post Therapy	0.1 (N=28)	88%	0.02 (N=3)	WBC <0.1 with no	<mark>0.0</mark> * (N=16)	WBC <0.1 with no	Dose Delivered to Bone Marrow	18 (8.2-32) Gy 616 (397-1027) mCi	n/a	16 (6.3-20) Gy 518 (313-1008) mCi
(T8, Pre FLU Conditioning)	(<0.1 – 0.3)	(p < 0.0001)	(0.01 – 0.02)	differential reported*		differential reported*	Key Data High	1 patient had unfavorable dosimetry lights:		∧ ∧ 5 patients ineligible for transplant

Figure 3: WBC Reduction Following Iomab-B Treatment

(0.05 - 3.33)

Post-dose percent reduction for DI and TI calculated based on Pre-DI and Pre-TI levels, respectively

Despite high blast count all patients receiving lomab-B successfully engrafted 15/19 (79%) of patients in the control arm failed to achieve complete remission

Table 1: Patient Demographics

Ongoing Phase 3 SIERRA Trial (N=38)

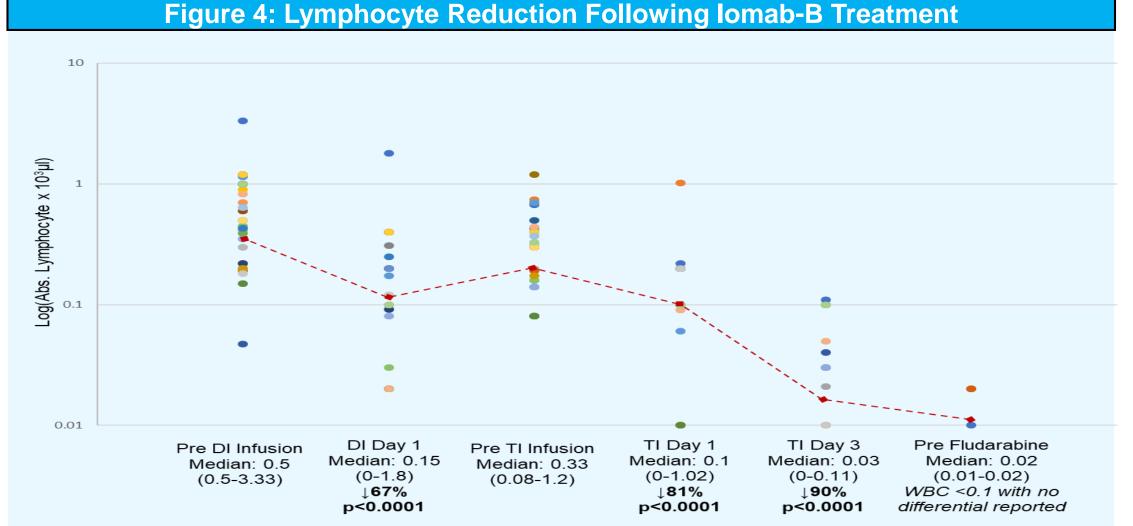
	Randomized to Iomab-B Study Arm (N=19)	Randomized to Conventional Care (N=19)	Randomized to Conventional Care and Crossed Over (N=10)
Age (median, range)	62 (55-72)	64 (55-76)	63 (58-72)
Disease Status At Randomization	Primary Induction Failure (10) First Early Relapse (1) Relapsed / Refractory (4) 2 nd / Subsequent Relapse (3) **1 patient not entered	Primary Induction Failure (6) First Early Relapse (1) Relapsed / Refractory (8) 2 nd / Subsequent Relapse (4)	Primary Induction Failure (3) First Early Relapse (0) Relapsed / Refractory (6) 2 nd / Subsequent Relapse (1)
% Bone Marrow Blasts at Randomization (median, range)	30% (4*-74)	26% (6-97)	Marrow Blasts <u>At randomization:</u> 24% (6-70) <u>At Crossover:</u> 45% (10-70)

*1 patient with peripheral blasts at screening

Primary End-point: Durable Complete Response Rate (dCR): morphologic CR lasting ≥180 days Secondary End-point 1-year Overall Survival

Key Eligibility Criteria:

Active, relapsed or refractory AML defined as:


- Primary induction failure (PIF) after ≥2 cycles of chemotherapy
- First early relapse after remission < 6 months
- Refractory to salvage combination chemotherapy with high-dose cytarabine
- Second or subsequent relapse
- Bone marrow blast count \geq 5% or the presence of peripheral blasts
- ≥ 55 years of age
- Karnofsky score \geq 70
- An 8/8 allele-level, related or unrelated, medically cleared HSC donor matching at HLA-A, HLA-B, HLA-C, and DRB-1

For Questions or Comments Relating to the SIERRA Trial, Please Contact: SIERRA.ACTINIUM@actiniumpharma.com

For more information about the SIERRA Trial, Please Visit: <u>www.sierratrial.com</u>

(0.0-19.7) (0.0-11.5) (0.0-0.01) median day of engraftment)	(0.7-13.97)	
--	-------------	--

ANC data points > 8 x10³ are not plotted in graph but have been included in data

Post-dose percent reduction for DI and TI calculated based on Pre DI and Pre TI levels, respectively

Conclusions

- Targeted radioimmunotherapy with single-agent lomab-B rapidly decreases peripheral blasts by 98% by day 3 in chemotherapy refractory AML.
- Iomab-B conditioning leads to myeloablation in older patients with active disease (up to a median of 45% blasts in the marrow) as demonstrated by engraftment in all patients.
- Successful engraftment after lomab-B and HCT benefits patients who had prolonged neutropenia due to active and refractory disease prior to transplant.
- While efficacy data is not yet available for these patients, rapid peripheral blast reduction is encouraging as prior studies utilizing cytotoxic chemotherapy suggest a relationship between the rate of disease reduction and disease response. Enrollment is ongoing.