

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Abst #702

First in Human (FIH) FLT3 and SYK Inhibitor HM43239 Shows Single Agent Activity in Patients (pts) with Relapsed or Refractory (R/R) FLT3 Mutated and Wild-Type Acute Myeloid Leukemia (AML)

Naval Daver M.D¹, Kyoo Hyung Lee M.D, Ph.D², Chul Won Jung M.D, Ph.D³, Sung-Soo Yoon M.D, Ph.D⁴, Martha L. Arellano M.D⁵, Jiyeon Yoon Ph.D⁶, Nora Lee Ph.D⁶, Hyunjin Kim Ph.D⁶, Jaeyeon Lee⁶, Brian A. Jonas M.D, Ph.D⁷, Seungjae Baek M.D, Ph.D⁶

¹Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA ²Department of Internal Medicine, University of Ulsan, College of Medicine and Asan Medical Center, Seoul, Korea ³Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea ⁴Department of Internal Medicine, Seoul National University, College of Medicine, Seoul National University Hospital, Seoul, Korea ⁵Winship Cancer Institute of Emory University, Atlanta, USA ⁶Hanmi Pharmaceutical Co., Ltd., Seoul, Korea ⁷University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA

Naval Daver, The University of Texas MD Anderson Cancer Center, Houston, TX December 13, 2021

HM43239

* p <0.05, *** p <0.001, and **** p <0.0001 Gilteritinib 30 mg/kg vs. Gilteritinib + Entospletinib by ANOVA

A. MOLM-14 with stroma cells

B. Inhibition of p-FLT3 and p-SYK

AACR 2021 Abst#1257

- Oral, highly potent clinical-stage myeloid kinome inhibitor designed to target a distinct kinases operative in myeloid malignancies including FLT3 and SYK
- Highly active against FLT3 ITD mutated as well as resistance-conferring D835 and gatekeeper (F691) TKD mutated AML cell lines and xenograft models
- Additionally, inhibits phosphorylation of SYK known to be highly activated in AML and associated with resistance to FLT3 targeted therapy

Study Design and Status

First in Human, Open-label, Multicenter, Phase I/II Study

Note, non-evaluable pt is not included.

ATD: Accelerated Titration Design, EXP: Dose expansion, MT: Moderate toxicity (non hematologic toxicities, IP related ≥G2 AEs), CR: complete remission, CRp: complete remission with incomplete platelet recovery, CRi: complete remission with incomplete hematologic recovery, PR: partial remission, CRc: Composite complete remission

Demographics and Disease Characteristics

3	Data	cutoff:	August	31	2021
	σαια	cuton.	August		2021

	Total (n=34)						
Age (years)							
Median (range)	59.5 (18, 84)						
Sex, n (%)							
Female	16 (47.1)						
Race, n (%)							
American Indian or Alaska Native	1 (2.9)						
Asian	21 (61.8)						
Black or African American	1 (2.9)						
White	9 (26.5)						
Not specified	1 (2.9)						
Unknown	1 (2.9)						
Bone marrow baseline (%)							
Median (range)	27.5 (0-96)						
FLT3 mutation status, n (%)							
Negative	18 (52.9)						
Positive	14 (41.2)						
	ITD 9 (26.5), TKD 4 (11.8), ITD/TKD 1 (2.9)						
Invalid/Unknown	2 (5.9)						
FLT3 mutation to wild-type signal ratio (AR)							
Median (range)	1.38 (0.11-23.82)						
Prior AML therapy, n (%)							
Chemotherapy	34 (100.0)						
HSCT	10 (29.4)						
Radiotherapy	2 (5.9)						
No. of prior AML lines of therapy							
Median (range)	2 (1-7)						
No. of prior FLT inhibitors*, n (%)							
0	29 (85.3)						
1	2 (5.9)						
≥2	3 (8.8)						

FLT inhibitors include sorafenib, midostaurin and ilteritinib.

S American Society *of* Hematology

Safety and Tolerability

Data cutoff: August 31 2021

		<u>_</u>
	All Grades, n (%)	≥ Grade 3, n (%)
Any TEAEs, n (%)	32 (94.1)	20 (58.8)
Any related TEAEs, n (%)	11 (32.4)	3 (8.8)
Drug-related AEs % (n=34)		
Gastrointestinal disorders	8 (23.5)	1 (2.9)
Diarrhoea	4 (11.8)	0 (0.0)
Nausea	4 (11.8)	1 (2.9)
Vomiting	2 (5.9)	0 (0.0)
Gastrooesophageal reflux disease	1 (2.9)	0 (0.0)
Investigations	4 (11.8)	1 (2.9)
Alanine aminotransferase increased	2 (5.9)	0 (0.0)
Aspartate aminotransferase increased	1 (2.9)	0 (0.0)
Blood alkaline phosphatase increased	1 (2.9)	0 (0.0)
Blood bicarbonate decreased	1 (2.9)	0 (0.0)
Blood urea decreased	1 (2.9)	0 (0.0)
Neutrophil count decreased	1 (2.9)	1 (2.9)
Platelet count decreased	1 (2.9)	0 (0.0)
General disorders and administration site		
conditions	2 (5.9)	0 (0.0)
Fatigue	1 (2.9)	0 (0.0)
Mucosal inflammation	1 (2.9)	0 (0.0)
Blood and lymphatic system disorders	1 (2.9)	1 (2.9)
Leukopenia	1 (2.9)	1 (2.9)
Cardiac disorders	1 (2.9)	0 (0.0)
Pericarditis	1 (2.9)	0 (0.0)
Eve disorders	1 (2.9)	0 (0.0)
Blepharitis	1 (2.9)	0 (0.0)
Immune system disorders	1 (2.9)	0 (0.0)
Graft versus host disease	1 (2.9)	0 (0.0)
Infections and infestations	1 (2.9)	0 (0.0)
Herpes zoster	1 (2.9)	0 (0.0)
Metabolism and nutrition disorders	1 (2.9)	0 (0.0)
Decreased appetite	1 (2.9)	0 (0.0)
	1 (2.9)	0 (0.0)
Hypocalcaemia		0 (0.0)
Hypocalcaemia Musculoskeletal and connective tissue disorders	1 (2.9)	0 (0.0) 0 (0.0)
Hypocalcaemia		0 (0.0) 0 (0.0) 0 (0.0)

FLT3 Plasma Inhibitory Activity

%pFLT3 inhibition vs. plasma concentration

Clinical Response by Mutation Status

Data cutoff: August 31 2021

		mg :20)		mg =7)	20-160 mg (n=34)		
Response	FLT3 Mutated	FLT3 Wild Type	FLT3 Mutated	FLT3 Wild Type	FLT3 Mutated	FLT3 Wild Type	
	n (%) n= 8†	n (%) n= 12†	n (%) n= 3	n (%) n= 4	n (%) n= 15 [†]	n (%) n= 19†	
CR	2 (25)	2 (16.7))	-	-	2 (13.3)	2 (10.5)	
CRi	1 (12.5)	-	-	-	1 (6.7)	-	
PR	-	-	1 (33.3)	-	1 (6.7)	-	
CRc	3 (37.5)	2 (16.7)	-	-	3 (20)	2 (10.5)	
ORR	3 (37.5)	2 (16.7)	1 (33.3)		4 (26.7)	2 (10.5)	

Note, patients who receive at least one dose and have at least one post-treatment data point are included in the data set for response analysis.

†Two pts were based on initial diagnosis – historically one pt was FLT3-ITD mutated and the other pt was FLT wild type.

CR: complete remission; CRp: complete remission with incomplete platelet recovery; CRi: complete remission with incomplete hematologic recovery; PR: partial remission

CRc: composite complete remission rate (CR +CRp + CRi); ORR: overall response rate (CR + CRp + CRi + PR)

- 30-day mortality = 11.4% (n=4), 60-day mortality = 17.6% (n=6)
- Median time to first response = 29 days (1 Cycle)
- Median duration on study = 51 days (range, 6-394 days)

Response to Treatment

Clinical response of six patients responded to 80 mg or 120 mg of HM43239

Note, Pt1, 2, 5 remain alive at the time of long term follow up; Pt 2 remain alive at the time of 30 days follow up; Pt3 is dead at the time of long term follow up; CR: complete remission, CRp: complete remission with incomplete platelet recovery, CRi: complete remission with incomplete hematologic recovery, PR: partial remission HSCT: hematopoietic stem cell transplantation, PD: progression of disease

American Society of Hematology

Characteristics of Responding Patients

Data cutoff: August 31 2021

Patients	Age/ Sex	Dose Level (QD)	AML status	FLT3 mutation* (mt to WT signal ratio)	Other mutation	No. prior therapies	No. prior FLT3i's	Cytogenetics	Best response	Cycles** to first response	Cycles** to best response	Duration on study (weeks)	Reason of discontinuation
Pt1	51/M	80mg	AML NOS	FLT3-ITD [†] (0.7)	NRAS, RUNX1	3	0	Normal	CRi	1	1	12	HSCT (remains in remission)
Pt2	50/M	80mg	AML NOS	FLT3-ITD (13.5)	NPM1, DNMT3A	1	0	Normal	CR	2	5	20	HSCT (remains in remission)
Pt3	67/F	80mg	AML NOS	FLT3-D835V [†] (0.11)	RUNX1	2	2 [#] (midostaurin, gilteritinib)	Normal	CR	1	1	7	HSCT (remains in remission)
Pt4	60/M	80mg	AML- MRC	FLT3-WT (0)	TP53	3	0	Abnormal‡	CR	1	8	56	PD → death (remains in remission)
Pt5	63/F	80mg	AML NOS	FLT3-WT [†] (0)	IDH2	1	0	Abnormal [‡]	CR	1	2	13	HSCT (remains in remission)
Pt6	54/F	120mg	AML NOS	FLT3-ITD [†] (23.82)	NPM1, DNMT3A, KRAS, PTPN11	2	2 [#] (midostaurin, gilteritinib)	Normal	PR	1	1	-	Ongoing in PR in C#2

Conclusions

- HM43239 showed a favorable safety profile with only mild AEs and no DLTs up to 160 mg per day. No drug discontinuations from drug related toxicity.
- HM43239 PIA activity was dose-dependent with up to 90% pFLT3 inhibition at the dose levels ≥ 80 mg.
- At 80 mg dose, composite CR rate of 25% was observed in both FLT3m (including a prior gilteritinib failure pt) and FLT3wt AML (including >1 year CR without HSCT in a relapsed TP53m AML).
- Among FLT3m patients treated at the 80mg dose, 3 of 8 (37.5%) achieved durable CR/CRi.
- Recently, another prior gilteritinib failure patient achieved PR after C1 at 120 mg dose.
- The study is ongoing in the cohorts the dose escalation cohort of 200 mg and the dose expansion cohorts of 120 mg and 160 mg are currently enrolling (NCT03850574).

Acknowledgements

We thank to the patients and their families for participating in this study and the investigators for their dedication to improving their patient's lives.

• Investigators (Clinical Sites):

Naval Daver (The University of Texas MD Anderson Cancer Center, Houston, TX) Brian A. Jonas (University of California Davis Comprehensive Cancer Center, Sacramento, CA) Martha L. Arellano (Winship Cancer Institute of Emory University, Atlanta, GA) Kyoo Hyung Lee (Asan Medical Center, University of Ulsan, Seoul, Korea) Chul Won Jung (Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea) Sung Soo Yoon (Seoul National University, Seoul, Korea)

• This study was sponsored by Hanmi Pharmaceutical co., Ltd. On November 4 2021, Hanmi has granted Aptose Biosciences the worldwide rights of HM43239 and Aptose will become the sponsor of the ongoing HM-FLTI-101 clinical study.

