

A Phase 1a/b Dose Escalation Study of the Mutation Agnostic BTK/FLT3 Inhibitor Luxeptinib (CG-806) in Patients with Relapsed or Refractory B-Cell Malignancies

Felipe Samaniego¹, John M. Burke², Daruka Mahadevan³, Mohamad Cherry⁴, Ahad Ali Sadiq⁵, M. Zach Koontz⁶, Jose C Villasboas⁷, Erin Reid⁸, Elizabeth Cull⁹, Victor Priego¹⁰, Lindsey E Roeker¹¹, Patrick Cobb¹², Jason M. Melear¹³, Paul Conkling¹⁴, David Cosgrove¹⁵, Hongying Zhang¹⁶, Nasrin Rastgoo¹⁶, Khalid Benbatoul¹⁶, Genia Su¹⁶, Donna N. Haney¹⁶, Yuying Jin¹⁶, Jotin Marango¹⁶, Stephen Howell⁸, William Rice¹⁶, Rafael Bejar^{8,16}

¹Department of Lymphoma and Myeloma, The University of Texas MD Anderson, UT Health San Antonio, TX; ⁴Morristown Medical Center, Atlantic Hematology Oncology, Morristown, NJ; ⁵Fort Wayne Medical Oncology and Hematology, Fort Wayne, IN; ⁶Pacific Cancer Center, University of California San Diego Health, San Diego, CA; ⁹Greenville Health System, Greenville, South Carolina; ¹⁰Regional Cancer Care Associates, NJ; ¹¹Memorial Sloan Kettering Cancer Center, New York, NY; ¹²St. Vincent Healthcare, Billings, MT; ¹³Texas Oncology. Associates, Norfolk, Virginia; ¹⁵Northwest Cancer Specialists / Compass Oncology, Vancouver, WA; ¹⁶Aptose Biosciences Inc, San Diego, CA

INTRODUCTION

Luxeptinib (CG-806) is a potent, non-covalent oral inhibitor designed to target BTK and FLT3. It suppresses BCR signaling pathways (through inhibition of LYN, SYK, BTK, AKT, ERK) in cell lines and primary CLL cells kills malignant B-cells insensitive to ibrutinib or venetoclax at low nM concentrations, and shows enhanced activity in combination with venetoclax.

Lymphoid & Myeloid Kinome Targeting	Selectively and potently inhibits lymphoid kinome BTK-cluster
	Selectively and potently inhibits myeloid kinome FLT3-cluster
	Under development for lymphoid & myeloid hematologic cancers
Mutation Agnostic	Potently inhibits WT and all mutant forms of BTK Potently inhibits WT and all mutant forms of FLT3
	May avoid rapid emergence of drug resistance
Robust Preclinical	Simultaneously suppresses multiple oncogenic signaling pathways in cells and animal models

Efficacy & Safety Profile Avoids kinases that negatively impact safety

Favorable safety profile in GLP toxicity studies

- **Primary objectives:**
- Assess safety and tolerability
- Determine recommended Phase 2 dose (RP2D)
- Key secondary objectives:
- Assess PK profile and PD activity
- Obtain preliminary evidence of antitumor activity
- Characterize the bioavailability (BA) of an

Patient Demographics

Patient Demographics	Cohorts 1 to 5 (N=26)*
Median Age (Range), Years	63.5 (55, 84)
Sex, N (%)	
Male	15 (57.7%)
Female	11 (42.3%)
Ethnicity, N (%)	
Not Hispanic or Latino	21 (80.8%)
Hispanic or Latino	4 (15.4%)
Not Reported	1 (3.8%)
Race, N (%)	
White	23 (88.5%)
Black or African American	3 (11.5%)
ECOG Score, N (%)	
0 -Normal activity	14 (53.8%)
1 -Symptoms, but ambulatory	12 (46.2%)
Disease Type, N (%)	
CLL/SLL	13 (50.0%)
NHL	13 (50.0%)
Relapsed or Refractory, N (%)	
Relapsed	13 (50.0%)
Refractory	4 (15.4%)
Both Relapsed and Refractory	9 (34.6%)
Intolerant to Prior Therapy, N (%)	12 (46.2%)
Median Number of Lines of Prior Therapy (Range)	4 (1, 12)
Chemotherapy, N(%)	24 (92.3%)
Radiation, N(%)	5 (19.2%)
Targeted and Immunotherapy, N (%)	
BTK-Inhibitor (ibrutinib, acalabrutinib, AVL-292)**	14 (53.8%)
Anti-BCL2 (venetoclax)	7 (26.9%)
PI3K-Inhibitor (idelalisib, duvelisib)	7 (26.9%)
Proteasome Inhibitor	2 (7.7%)
Other Kinase Inhibitor	1 (3.8%)
Antibody	26 (100%)
Steroid	10 (38.5%)
Immunomodulatory Agent	8 (30.8%)
Cellular	3 (11.5%)
Other Experimental Agent	2 (7.7%)
Checkpoint Inhibitor	1 (3.8%)
Transplant, N (%)	1 (3.8%) †
Unknown Experimental Agent, N (%)	1 (3.8%)

*Data-cut date: Sep 29, 2021; + 1 patient had autologous transplant.

** All 14 patients received ibrutinib (IBR), at least two of them also received acalabrutinib or AVL-292.

Thromb

OBJECTIVES & STUDY DESIGN

- (NCT03893682) Phase 1 a/b, open-label, single arm, multicenter, clinical study in patients with relapsed or refractory CLL/SLL or NHL who failed or were intolerant to >2 lines of established therapy, or for whom no other treatment options are available
- 3 + 3 dose-escalation, accelerated titration design - Additional patients may be enrolled (back filling) at dose levels previously declared safe
- Intra-patient dose escalation is allowed if higher dose is safe in 3 or more patients.

automated filled (G2) vs. the original hand-filled (G1) formulations

		•				
Cohort	Dose	Status				
1	150 mg BID	Completed 🥑				
2	300 mg BID	Completed 🕑				
3	450 mg BID	Completed 🗸				
4	600 mg BID	Completed 🕑				
5	750 mg BID	Completed 🥑				
BA	450 mg BID	Completed 🕑				
BA	600 mg BID	Ongoing				
6	900 mg BID	Ongoing				
7	1050 mg BID	Planned**				
8	1200 mg BID*	Planned**				
* Protocol enables dose escalation directly from Cohort 900mg to Cohort 1200mg based upon decision of the C						

Safety and Tolerability Profile

Events	Cohorts 1 to 5 (N=26)*
Any Treatment Emergent Adverse Events (TEAEs)	25 (96.2%)
Any TEAEs ≥ Grade 3	18 (69.2%)
TEAE Leading to Treatment Discontinuation	4 (15.4%)
TEAE Leading to Death	0 (0.0%)
Any Serious TEAEs (SAEs)	9 (34.6%)
Any Luxeptinib Related TEAEs ≥ Grade 3	11 (42.3%)‡
Any Luxeptinib Related SAEs	4 (15.4%)†
Dose Limiting Toxicity	1 (3.8%)++
* Data-cut date: Sep 29, 2021; ‡ Including 2 patients v	vho experienced Grade 3

Data-cut uate. Sep 29, 2021, + including 2 patients who experienced drade 5 lymphocytosis; † All four were assessed as possibly related to study drug; ††One patient (Dose level 5, 750mg) had new onset hypertension during screening (Grade 1) and on C1D1 prior dosing (Grade 2), which became Grade 3 on C1D6 and then Grade 4 hypertension and were assessed as possibly related to study drug.

Treatment Emergent Adverse Events

	Cohorts 1 to 5 (N=26)*			
Preferred Term	Related TEAE		All TEAE	
	Any Grade, N (%)	Grade 3-4, N (%)	Any Grade, N** (%)	Grade 3-4, N (%)
All Patients	21 (80.8%)	11 (42.3%)	25 (96.2%)	18 (69.2%)
Diarrhoea	8 (30.8%)	2 (7.7%)	11 (42.3%)	2 (7.7%)
Nausea	7 (26.9%)	0	8 (30.8%)	0
Neutrophil count decreased	7 (26.9%)	5 (19.2%)	7 (26.9%)	5 (19.2%)
Fatigue	6 (23.1%)	0	9 (34.6%)	1 (3.8%)
Vomiting	6 (23.1%)	0	6 (23.1%)	0
White blood cell count decreased	4 (15.4%)	2 (7.7%)	4 (15.4%)	2 (7.7%)
Aspartate aminotransferase increased	3 (11.5%)	0	6 (23.1%)	0
Platelet count decreased	3 (11.5%)	2 (7.7%)	5 (19.2%)	4 (15.4%)
Anaemia	2 (7.7%)	2 (7.7%)	8 (30.8%)	6 (23.1%)
Headache	2 (7.7%)	1 (3.8%)	4 (15.4%)	1 (3.8%)
Abdominal distension	2 (7.7%)	0	3 (11.5%)	0
Alanine aminotransferase increased	2 (7.7%)	1 (3.8%)	3 (11.5%)	1 (3.8%)
Constipation	2 (7.7%)	0	3 (11.5%)	0
Insomnia	2 (7.7%)	0	3 (11.5%)	0
Dyspnoea	1 (3.8%)	0	6 (23.1%)	2 (7.7%)
Hypokalaemia	1 (3.8%)	0	5 (19.2%)	1 (3.8%)
Decreased appetite	1 (3.8%)	0	3 (11.5%)	0
Dizziness	1 (3.8%)	0	3 (11.5%)	0
Muscular weakness	1 (3.8%)	0	3 (11.5%)	0
Abdominal pain	0	0	6 (23.1%)	0
Cough	0	0	5 (19.2%)	0
Fall	0	0	3 (11.5%)	1 (3.8%)
Nasal congestion	0	0	3 (11.5%)	0
Pleural effusion	0	0	3 (11.5%)	0
Thrombocytopenia	0	0	3 (11.5%)	1 (3.8%)

*No Related TEAEs = Grade 5 as of Sep 29, 2021 ** ≥10% of patients

ASH2021 Abstract# 1355

Best Response in Evaluable Patients Treated in Various Cohorts All patients, who had at least one imaging for tumor or IgM measurement (WM patient) since starting treatment, were included (n=15). Heavily-pretreated included many relapsed or refractory after BTKi therapy with

*** Dose level shown at time of best response if at least 1 cycle of treatment at this dose level was received prior to response assessment ** WM measuring % IgM

Treatment Cohorts

Pharmacokinetic Profile

As of data-cut date on September 29, 2021

26 patients, including 5 patients in BA sub-study, were enrolled and treated across 5 cohorts 5 patients continue treatment on study

Heavily-pretreated B-cell cancer patients with median 4 lines of prior therapies (range 1-12) 14 (53.8%) patients had prior ibrutinib therapy. At least 2 of them also received other BTKi acalabrutinib or AVL-292

several patients showing rapid progression immediately before Lux treatment **Emergence of modest anti-tumor activity to Lux correlated with increased plasma** concentrations

Plasma PK Profile

Luxeptinib achieved dose-related steady state plasma concentration with consistent Cmin > 1μ M over multiple cycles at the dose of 750mg BID (cohort 5).

We thank our principal investigators, clinical site staff, and most importantly, our patients and their families for their participation in this clinical trial.

Currently also treating patients with R/R FLT3-mutant/wildtype AML or higher-risk MDS in a Ph 1 a/b study (NCT04477291, the latest update presented at ASH2021 abstract/poster#1272)

Antitumor Activity in Patients

Treatment (Cycle/Day)

when compared with highest measurement (C7D1) and baseline (screening), respectively. > Well-tolerated with single agent activity for the duration of 16+ cycles of therapy

LUXEPTINIB PHASE 1a/b CONCLUSIONS

Anti-tumor activity observed in multiple patients: FL, WM, CLL/SLL, DLBCL

• Tumor reduction in patient with follicular lymphoma (FL) upon dose escalation from 450 mg to 600 mg

• IgM reduction in patient with WM at 750mg dose

• Dose escalation well-tolerated from 150 – 750 mg BID over multiple cycles

One apparent DLT of hypertension led to expansion at 750 mg BID in Cohort 5 – upon further review appears unlikely related; no DLTs occurred in the other 5 patients and supported dose escalation to 900 mg BID.

Currently treating patients with R/R B-cell malignancies at 900 mg BID in Cohort 6