SYN-004 (ribaxamase) prevents New Onset *Clostridium difficile* Infection by Protecting the Integrity Gut Microbiome in a Phase 2b Study

John F. Kokai-Kun
ID Week 2017
San Diego, CA
Oct. 7, 2017
Forward-Looking Statements

This presentation includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, on Synthetic Biologics’ current expectations and projections about future events. In some cases forward-looking statements can be identified by terminology such as "may," "should," "potential," "continue," "expects," "anticipates," "intends," "plans," "believes," "estimates," "indicates," and similar expressions. These statements are based upon management’s current beliefs, expectations and assumptions and are subject to a number of risks and uncertainties, many of which are difficult to predict and include statements regarding our timeline for our SYN-004 (ribaxamase) and SYN-010 clinical trials and reporting of data, the size of the market, benefits to be derived from use of SYN-004 (ribaxamase) and SYN-010, our anticipated patent portfolio, and our execution of our growth strategy. The forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially from those set forth or implied by any forward-looking statements. Important factors that could cause actual results to differ materially from those reflected in Synthetic Biologics’ forward-looking statements include, among others, our product candidates demonstrating safety and effectiveness, as well as results that are consistent with prior results, our ability to initiate clinical trials and if initiated, our ability to complete them on time and achieve the desired results and benefits, our clinical trials continuing enrollment as expected, our ability to obtain regulatory approval for our commercialization of product candidates or to comply with ongoing regulatory requirements, regulatory limitations relating to our ability to promote or commercialize our product candidates for the specific indications, acceptance of our product candidates in the marketplace and the successful development, marketing or sale of our products, developments by competitors that render our products obsolete or non-competitive, our ability to maintain our license agreements, the continued maintenance and growth of our patent estate, our ability to become or remain profitable, our ability to establish and maintain collaborations, our ability to obtain or maintain the capital or grants necessary to fund our research and development activities, a loss of any of our key scientists or management personnel, and other factors described in Synthetic Biologics’ annual report on Form 10-K for the year ended December 31, 2016, subsequent quarterly reports on Form 10-Qs and any other filings we make with the SEC. The information in this presentation is provided only as of the date presented, and Synthetic Biologics undertakes no obligation to update any forward-looking statements contained in this presentation on account of new information, future events, or otherwise, except as required by law.
Disruption of the Gut Microbiome Can Lead to *Clostridium difficile* Infection

- IV Antibiotics
- Biliary excretion
- Dysbiosis
- Probiotics and prebiotics
- Antibiotics (Vaccines)
- mAbs & Vaccines
- FMT & Bacterial Replacement Therapy
- *C. difficile* spores
- ribaxamase

CDI IS SERIOUS, DEADLY, AND EXPENSIVE

- 29,000 US deaths/year within 30 days of diagnosis
- 1 in 5 recurrences within 2 months

CDI adds up to:
- 12 days in the hospital
- $27,160 per case in direct costs

C. difficile

FMT
SYN-004 (ribaxamase) rye bak’ sa mase

- An orally administered, β-lactamase (an enzyme of 29 kDa) that is designed to degrade penicillins and cephalosporins (engineered from P1A)

- Formulated for pH-dependent release at ≥ 5.5 (proximal small intestine)

- Expected to be orally administered during and after administration of intravenous (IV) β-lactam-containing antibiotics like ceftriaxone

- Intended to degrade the excess antibiotics that are excreted into the small intestine via the bile (ribaxamase is stable in human intestinal chyme)

- Designed to prevent disruption of the gut microbiome and thus protect from opportunistic GI pathogens like *C. difficile*
Clinical development
Early Phase Clinical Studies

Phase 1 and Phase 2a

• **Phase 1** - two studies in normal, healthy volunteers
 - Well tolerated up to 750 mg single dose and 300 mg q.i.d. for 7 days
 - Not systemically absorbed and no anti-drug antibodies were detected

• **Phase 2a** - two studies in subjects with functioning ileostomies, administered IV ceftriaxone ± oral ribaxamase
 - Ribaxamase degraded ceftriaxone to below the level of detection in the intestine
 - Ribaxamase did not affect the plasma PK of the ceftriaxone
 - Ribaxamase can be administered in the presence of proton pump inhibitors
Ribaxamase: Efficacy Study

84 Multinational Clinical Sites

Patients admitted to the hospital for treatment of a lower respiratory tract infection

Modified intent to treat = 412 patients

1:1

Ceftriaxone + Ribaxamase (plus a macrolide)

Ceftriaxone + Placebo (plus a macrolide)

Primary Endpoint:
• Prevention of *C. difficile* infection (CDI)

Secondary Endpoint:
• Prevention of *non-C. difficile*, antibiotic-associated diarrhea (AAD)

Exploratory Endpoints:
• Evaluate ability to limit disruption of the gut microbiome

Patients admitted to the hospital for treatment of a lower respiratory tract infection

Modified intent to treat = 412 patients
Enriching for a Population at Risk for C. difficile Infection

- Patients were admitted to a hospital for several days
- At least 5 days of ceftriaxone use expected
- Patients > 50 years old
- Patients with higher PORT scores
 (a measure of the severity of the primary infection)
Proof of Concept Study

Study Design

Randomized 1:1, 150 mg ribaxamase or placebo

Treatment Period 1

5-14 days

IV Ceftriaxone + Study Drug (qid dosing)

Treatment Period 2

72 hrs

Study Drug (qid dosing)

Follow-up Period

6 weeks

Monitor for diarrhea and *C. difficile* infection

4 week follow-up visit

US

Romania

Hungary

Poland

Canada

Bulgaria

Serbia

Fecal microbiome and fecal colonization samples taken for analysis

Diarrhea = 3 or more loose or watery stools in a 24 hour period, samples are collected

CDI = local lab results for presence of *C. difficile* toxins A and/or B by an approved test

(confirmed at a central lab by toxin ELISA)
Study Demographics and Safety Outcomes

• 206 patients per group in mITT
• Average age of patients ~70 years old
• ~2/3 males in each group
• ~1/3 of patients received macrolides
• ~1/3 patients received concurrent drugs for stomach acidity (PPIs)
• AEs and SAEs were similar between active and placebo and there was no trend associated with ribaxamase use
• Cure rate for the LRTI to the ceftriaxone treatment was ~99% in both groups at 72 hours post treatment and at 2 weeks post treatment
Analysis of Changes in the Gut Microbiome

16S rRNA sequencing of DNA extracted from fecal samples

652 samples sequenced, 229 patients, 187 full-3 sample sets

Sequencing and data analysis performed by DNA Genotek, Ottawa, Canada
SYN-004 (ribaxamase) Protected Microbial Diversity

Prevented ceftriaxone-mediated loss of \(\alpha \)-diversity and enhanced microbiome recovery

Alpha diversity is a measure of the community composition within an individual sample.

\(\alpha \)-diversity
- Observed OTUs
- Chao1 Diversity
- Shannon Diversity
SYN-004 (ribaxamase) Protected Microbial Diversity
Prevented ceftriaxone-mediated loss of \(\beta \text{-diversity} \) and enhanced microbiome recovery

Beta diversity compares the community composition of two different sample sets.

Principle coordinate analysis of the \(\beta \text{-diversity} \) (unweighted Unifrac) of patient samples. By T2, the ribaxamase samples have recovered to their starting diversity, but the placebo samples still display a significant loss of diversity as compared with screening.

\(p=0.0025 \)
\(p=0.0064 \)

- Bray-Curtis
- Unweighted UniFrac
Clostridium difficile Infection (CDI)

- No CDI patients reported previous CDI
- P-values are 1-sided based on the pre-specified Z-test
- The study was powered at 80% with 1-sided alpha=0.05
Antibiotic-associated Diarrhea

- Placebo vs Ribaxamase

- P-values are 1-sided based on the pre-specified Z-test
New *C. difficile* Colonization at 72 hrs & 4 weeks

- New colonization is negative on screening and then positive on a subsequent sample
- P-values are 1-sided based on the pre-specified Z-test
New VRE Colonization at 72 hrs & 4 weeks

- P-values are 1-sided based on the pre-specified Z-test
Resistome Analysis of Longitudinal Fecal Samples

CDC Contract 200-2016-91935

- DNA extracted from 350 fecal samples sequenced by whole genome shotgun sequencing (Diversigen, Houston, TX)
- Interrogated against the CARD database
- 21,000,000 DNA matches
- 1300 AMR genes identified with ~60,000 matches per sample
- Including many genes of interest, β-lactamases, vancomycin and macrolide resistance genes
- Statistical analysis was performed to determine which genes significantly changed from the screening sample (T0) to the post antibiotic sample (T1) in the placebo vs. the ribaxamase patients
Analysis of the Change in Relative Abundance of AMR Genes

Collection point T0 to T1, Placebo vs. Ribaxamase-treated patients

T0
\[\text{Placebo}\]

T1
\[\text{Ribaxamase}\]

LefSe Analysis

Sat. 12:30 Poster -1843
Conclusions

- Ribaxamase **reduced the incidence** of new onset CDI by 71% as compared with placebo (confirmed at the central lab), p=0.045
- Ribaxamase **protected the diversity** of the gut microbiome
- Ribaxamase appeared to be **well tolerated and not affect the cure rate** for the primary infection
- Ribaxamase did not significantly reduce AAD as defined in the protocol, but there was a **reduction in all cause diarrhea** and in sub-analysis groups
- Ribaxamase **reduced new colonization** with *C. difficile* and VRE, p=0.0002
- Ribaxamase **reduced ceftriaxone-induced changes** in the gut resistome
 - β-lactamases and vancomycin resistance
Ribaxamase Represents a Paradigm Shift
In the Use of Intravenous β-lactam Antibiotics

Current paradigm

Stomach	Duodenum	Jejunum	Ileum	Cecum	Colon
Bile

Excess Antibiotic

Systemic Antibiotics

Treat Infection

Ribaxamase paradigm

Stomach	Duodenum	Jejunum	Ileum	Cecum	Colon

Ribaxamase

No Drug Release

Antibiotic Degraded

Oral antibiotics

Healthy, diverse microbiome
Suppresses secondary infections
Limits emergence of resistant species

× Disrupted microbiome
× Secondary infections such as C. difficile
× Selects for resistant species
Acknowledgements
Synthetic Biologics, Inc.

This work was partially funded by contract 200-2016-91935, in response to CDC’s BAA 2016-N-17812

• **Research and Development**
 • Mike Kaleko
 • Sheila Connelly
 • Christian Furlan Freguia

• **CMC**
 • Ray Stapleton
 • Andy Bristol
 • Steve Hubert

• **Non-clinical Development**
 • John Kokai-Kun

• **Clinical Development**
 • Joe Sliman
 • Chris da Costa
 • Charles Le

• **Project Management**
 • Olivia Coughlin
 • Lara Guzman

• **Clinical Operations**
 • Heidi Whalen
 • Tracey Roberts
 • Heather McFall

• **Quality Assurance**
 • Karen Hughes

• **Regulatory Affairs**
 • Amy Sloan
 • Scott Shapot

• **Informatics**
 • Ken Trout

• **Medical Affairs**
 • Deb Mathews
 • Trudi Delk
 • Jenn Blessing