SYN-004 (ribaxamase)

An Orally-Delivered Beta-Lactamase Protects the Gut Microbiome from Antibiotic-Mediated Damage and Mitigates Propagation of Antibiotic-Resistance Genes in a Porcine Dysbiosis Model

Sheila Connelly

Digestive Disease Week 2017
Chicago, IL
May 7, 2017
Forward-Looking Statements

This presentation includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, on Synthetic Biologics’ current expectations and projections about future events. In some cases forward-looking statements can be identified by terminology such as "may," "should," "potential," "continue," "expects," "anticipates," "intends," "plans," "believes," "estimates," "indicates," and similar expressions. These statements are based upon management’s current beliefs, expectations and assumptions and are subject to a number of risks and uncertainties, many of which are difficult to predict and include statements regarding our timeline for our clinical trials and reporting of data, our establishment of collaborations and our execution of our growth strategy, benefits to be derived from use of SYN-004 and our execution of our growth strategy. The forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially from those set forth or implied by any forward-looking statements. Important factors that could cause actual results to differ materially from those reflected in Synthetic Biologics’ forward-looking statements include, among others, our product candidates demonstrating safety and effectiveness, as well as results that are consistent with prior results, our ability to initiate clinical trials and if initiated, our ability to complete them on time and achieve the desired results and benefits, our clinical trials continuing enrollment as expected, our ability to obtain regulatory approval for our commercialization of product candidates or to comply with ongoing regulatory requirements, regulatory limitations relating to our ability to promote or commercialize our product candidates for the specific indications, acceptance of our product candidates in the marketplace and the successful development, marketing or sale of our products, developments by competitors that render our products obsolete or non-competitive, our ability to maintain our license agreements, the continued maintenance and growth of our patent estate, our ability to become or remain profitable, our ability to establish and maintain collaborations, our ability to obtain or maintain the capital or grants necessary to fund our research and development activities, a loss of any of our key scientists or management personnel, and other factors described in Synthetic Biologics’ annual report on Form 10-K for the year ended December 31, 2016, subsequent quarterly reports on Form 10-Qs and any other filings we make with the SEC. The information in this presentation is provided only as of the date presented, and Synthetic Biologics undertakes no obligation to update any forward-looking statements contained in this presentation on account of new information, future events, or otherwise, except as required by law.
The Gut Microbiome Regulates Human Physiology

"All disease begins in the gut!" - Hippocrates

400 B.C.

Gut Microbiome Involved in:
- Digestion
- Immune system
- Protection from pathogens
- Metabolic, cardiovascular, neurological diseases

Reservoir of antibiotic resistance

Disrupted by:
- Opportunistic infections
- C. difficile
- VRE
- MDR

Synthetic Biologics is developing therapies to protect the gut microbiome from antibiotic damage.
SYN-004 (ribaxamase): Paradigm Shift Through Protection and Prevention

Antibiotic Inactivation to Preserve the Gut Microbiome

Current Approach

Antibiotics
- β-lactam
- Fluoroquinolone
- Clindamycin
- Other

Ribaxamase Paradigm

Antibiotics
Beta-lactam antibiotic + ribaxamase

C. difficile

Recurrence of C. difficile infection

More Antibiotics
- Metronidazole
- Vancomycin
- Fidaxomicin

Protection of the microbiome
Prevention of C. difficile infection

Ribaxamase: protection of the gut microbiome during antibiotic use

Intact gut microbiome
Beta-Lactamases: From Enemies to Therapies

Strategy: SYN-004 (ribaxamase) is a beta-lactamase enzyme designed to be taken orally to degrade selected beta-lactam antibiotics in the GI tract to protect the microbiome.

Product: Capsule with enteric-coated enzyme

Intended Protection: Protection of the gut microbiota, prevention of *C. difficile* infection, and reduction of antibiotic-resistance propagation.

Outcome: Orally-delivered ribaxamase is intended to degrade residual antibiotics in the GI tract to protect the gut microbiome without affecting antibiotic efficacy.
Completed Phase 1 (2 trials), Phase 2a (2 trials), and a Phase 2b trial

Phase 1: Demonstrated good tolerability with no systemic absorption of ribaxamase*

Phase 2a: Demonstrated ribaxamase degraded ceftriaxone in the GI tract without affecting systemic levels**

Phase 2b: Demonstrated a significant reduction in *C. difficile* disease and a significant reduction in new colonization by vancomycin-resistant enterococci (VRE) in patients receiving IV ceftriaxone for a lower respiratory tract infection

- Tuesday May 9 at 10:30 am, oral presentation of Abstract 874j in Clinical Science: Late-Breaking Abstract Plenary, Room S103. John Kokai-Kun: An Oral Beta-Lactamase Prevented *Clostridium Difficile Infection* and Protected Patients from Colonization by Antimicrobial Resistant Pathogens by Preserving Gut Microbiome Diversity in a Phase 2B Clinical Trial
- Through CDC funding, microbiome assessments are in progress to evaluate ribaxamase’s ability to reduce the emergence of antibiotic resistance

Phase 3: Expected 1H2018

Piglet Model of Antibiotic-Mediated Dysbiosis

2 month old 20 kg piglets N=5 per cohort

Days:
-7 -4 0 1 2 4 7 8 9

Feces collections
Blood collections

Oral ribaxamase (75 mg QID)

Antibiotics: IV Ceftriaxone IV Ertapenem Oral Amoxicillin

Readouts:
- Fecal DNA whole genome shotgun sequencing analyses
- Antibiotic blood levels
Ribaxamase Protected the Microbiome in Piglets

- Piglet Fecal DNA whole genome shotgun sequencing and taxonomic profiling
- Heatmap of bacterial strains displayed as the relative abundance

Ribaxamase reduced antibiotic-mediated changes to the microbiome

A broad spectrum of antibiotic-resistance genes were propagated in response to ceftriaxone, not just those conferring resistance to beta-lactams.

Ribaxamase reduced emergence of antibiotic-resistance genes.
Ribaxamase Prevented Propagation of a Broad Range of AR Genes

Change in the frequency of AR genes

- **Ceftriaxone Alone**
- **Ceftriaxone + Ribaxamase**

Ceftriaxone caused an increase in AR gene frequency while ribaxamase reduced AR gene frequency.
Ribaxamase Prevented Emergence of Non-Beta-Lactamase AR Genes

Aminoglycoside _strA_

Ribaxamase significantly reduced emergence of genes conferring resistance to antibiotics other than beta-lactams.

Tetracycline _tet39_

P<0.05
Beta-Lactam Antibiotics Caused Dysbiosis in Piglets

Heatmap of bacterial strains displayed as the relative abundance

Antibiotics caused depletion of some species and overgrowth of others
A broad spectrum of antibiotic-resistance genes were propagated in response to antibiotic exposure, not just those conferring resistance to beta-lactams.
Emergence of Antibiotic Resistance Genes after Amoxicillin Exposure

ESBL Genes

- OXA-347
- CblA-1

Other AR Gene

- Aminoglycoside_strA

ESBL and AR genes were rapidly propagated after amoxicillin exposure.
Oral Amoxicillin Exposure Causes Propagation of a Broad Range of AR Genes

A broad spectrum of antibiotic-resistance genes were propagated in response to amoxicillin exposure.
Emergence of AR Genes after Ertapenem Exposure

ESBL Genes

- OXA-227
- IMP-27

Relative Gene Frequency (%)

Day -7 Day -4 Day 4 Day 9

Other AR Genes

- mphE
- adeC

Relative Gene Frequency (%)

Day -7 Day -4 Day 4 Day 9

ESBL and AR genes were rapidly propagated after ertapenem exposure

Mollenkopf DF. et al., Ohio State University (2017) AAC 61: e01298-16; Johnson, TJ (2017) AAC 61: e02348-16

"Nightmare" bacteria resistant to last-resort antibiotics discovered on farm. http://civileats.com/2016/12/15/26075
Vancomycin-resistance genes were rapidly propagated after ertapenem exposure.
A broad spectrum of antibiotic-resistance genes were propagated in response to ertapenem exposure.
Future Directions

• Ribaxamase
 • Continuing Phase 2b data analysis including exploratory end points, as well as fecal microbiome and resistome data (CDC contract)
 • Oral presentation of Phase 2b data, Tuesday May 9 at 10:30 am Clinical Science: Late-Breaking Abstract Plenary, Room S103
 • Planning for Phase 3 pivotal trials

• Ribaxamase and oral beta-lactam antibiotics
 • Formulations that release distal to the site of oral antibiotic absorption are in progress
 • Testing in pig model of oral amoxicillin dysbiosis
 • Has the potential to expand indications to include oral beta-lactams

• Carbapenemase (SYN-006)
 • Recombinant protein produced in E. coli
 • Formulation for oral delivery in progress
 • Testing in pig model of ertapenem dysbiosis

• Additional strategies to protect the microbiome from antibiotics
Ribaxamase is intended as an orally-delivered beta-lactamase to protect the gut microbiome from IV penicillins and cephalosporins to prevent C. difficile infection (CDI).

Phase 2b proof-of-concept study demonstrated a statistically significant reduction in CDI and new VRE colonization in patients that received ribaxamase with ceftriaxone compared to placebo.

Ribaxamase protected the gut microbiome from ceftriaxone-mediated dysbiosis in pigs.

Ribaxamase reduced the emergence and propagation of antibiotic-resistance genes in pigs.

Goal of this antibiotic-inactivation strategy is to enable patients to leave the hospital with their gut microbiomes intact:
- Protect from CDI and secondary infections with MDR organisms
- Reduce antibiotic resistance
- Diminish risks associated with beta-lactam antibiotics

Ribaxamase has the potential to become the first prophylactic therapy designed to prevent antibiotic-mediated microbiome damage including C. difficile infection.
Acknowledgements

Synthetic Biologics, Inc.

Research
Michael Kaleko
Christian Furlan-Freguia

Development
Ray Stapleton, Jr.
J. Andrew Bristol
Steven Hubert

Clinical and Nonclinical
Joe Sliman
Olivia Coughlin
Lara Guzman
John Kokai-Kun
Heather McFall
Tracey Roberts
Scott Shapot
Amy Sloan
Heidi Whalen

CosmosID, Inc.

Rita R. Colwell
Nur Hasan
Poorani Subramanian

Protection
Preservation
Prevention

Graphic by Hyperbiotics