Novel Broad-Spectrum β-Lactamase Therapy to Protect the Gut Microbiome from Antibiotics

Sheila Connelly, PhD
Vice President of Research
ICETAR June 25, 2015
Importance of Intestinal Health Has Long Been Recognized

“ALL DISEASE BEGINS IN THE GUT!”
-Hippocrates
400 B.C.

Gut Microbiome Involved in:
- Digestion
- Nutrient absorption
- Vitamin synthesis
- Bile salt metabolism
- Stimulation of immune system

Disrupted by:
- Antibiotic use

Synthetic Biologics is developing therapies to protect the gut microbiome from the damage caused by antibiotic use
β-Lactamases: From Enemies to Therapies

Strategy: β-lactamase enzyme is intended to degrade residual antibiotics in the GI tract to protect the microbiome

Product: Capsule with enteric-coated enzyme

Outcome: Prevention of *Clostridium difficile* infection and antibiotic-associated diarrhea

Orally-delivered β-lactamases intended to degrade residual antibiotics in the GI tract to protect the gut microbiome without affecting antibiotic efficacy.
β-Lactamase Clinical Efficacy: Degradation of Intestinal Penicillins

P1A
• Clinical isolate from *Bacillus licheniformis*
• Class A serine β-lactamase
• Degrades penicillins

Clinical results

<table>
<thead>
<tr>
<th>Similarity Index</th>
<th>Amp-Resistant Bac</th>
<th>GI Tract</th>
<th>Systemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1A Alone</td>
<td>Amp Alone</td>
<td>Amp+P1A</td>
<td>Amp+P1A</td>
</tr>
<tr>
<td>Amp+P1A</td>
<td>Amp+P1A</td>
<td>Amp+P1A</td>
<td>Amp+P1A</td>
</tr>
</tbody>
</table>

Stop Amp

P1A does not degrade cephalosporins, a major risk factor for *Clostridium difficile* infection
Ceftriaxone and Pip/Tazo are the Most Frequently Used IV β-Lactams

IV β-Lactam Use

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients</td>
<td>Days on Therapy</td>
</tr>
<tr>
<td>Total IV Abx</td>
<td>23 million</td>
<td>170 million</td>
</tr>
<tr>
<td>IV β-lactams</td>
<td>17 million</td>
<td>73 million</td>
</tr>
<tr>
<td>% of Total</td>
<td>72%</td>
<td>43%</td>
</tr>
</tbody>
</table>

Individual β-Lactam Antibiotics: Days on Therapy

US
- Ceftriaxone: 30%
- Pip and Pip/Tazo: 27%
- Cefazolin: 23%
- Other: 9%
- Amp and Amp/Sulbactam: 11%

EU
- Ceftriaxone: 32%
- Pip and Pip/Tazo: 20%
- Cefazolin: 8%
- Other: 5%
- Cefotaxime: 14%
- Cefuroxime: 13%
- Amp and Amp/Sulbactam: 14%

Arlington Medical Resources (AMR), a Decision Resources Group Company 2014 audits of acute care hospital antibiotic utilization
SYN-004 Degrades Cephalosporins

- SYN-004 was engineered from P1A
- Contains one amino acid substitution: D276N

E. coli growth microtiter plate assay

SYN-004 efficiently degrades cephalosporins, including ceftriaxone, cefuroxime, cefoperazone, ceftazidime, and cefotaxime
SYN-004 Oral Formulation is Stable in Human Chyme

SYN-004 Enteric-Coated Pellets

Enteric-coated SYN-004 pellets remain intact at low pH and released enzyme retains biological activity for at least 6 hours in human intestinal contents.
SYN-004 is in Phase 2 Clinical Trials

Preclinical Results
- Safe in two GLP toxicity studies in dogs
- Well tolerated with a NOAEL of 57 mg/kg/day, highest dose tested
- Not detected systemically
- Did not affect ceftriaxone blood levels

Clinical Results
- Phase 1 clinical studies demonstrated SYN-004 safety and tolerability with a single dose of up to 750 mg and multiple doses of 300 mg 4X a day for 7 days
- SYN-004 was neither systemically bioavailable nor immunogenic
- Phase 2a clinical studies were initiated in 1H 2015
- A Phase 2b clinical study is on track to be initiated in 3Q 2015

SYN-004 efficiently degrades penicillins and cephalosporins but does not degrade carbapenems
P2A, NDM, and KPC are Broad-Spectrum Carbapenemases

P2A
- Clinical isolate from *Bacillus cereus*
- Class B metallo-β-lactamase
- Requires Zn$^{2+}$ for activity
- Resistant to β-lactamase inhibitors

NDM
- New Delhi metallo-β-lactamase
- Class B metallo-β-lactamase
- Requires Zn$^{2+}$ for activity
- Resistant to β-lactamase inhibitors

KPC
- *Klebsiella pneumoniae* carbapenemase
- Class A serine β-lactamase
Expression of P2A, NDM, and KPC in *E. coli*

- Over 100 *E. coli* strains were generated
- P2A, NDM, and KPC scaled to 5L bioreactor fermentation

Carbapenemases were efficiently produced in *E. coli* and retained biological activity following purification.
Antibiotic Degradation Profile of Selected Carbapenemases

P2A, NDM, KPC were compared to SYN-004

E. coli growth microtiter plate assay

P2A and NDM display the broadest antibiotic degradation profiles including penicillins, cephalosporins, and carbapenems and are resistant to \(\beta\)-lactamase inhibitors
P2A is Stable in Human Chyme

Purified P2A was incubated in human chyme and activity assessed using the CENTA assay

- P2A displayed sustained biological activity in human chyme in the presence of Zn$^{2+}$
- P2A was sensitive to pH as increasing the pH of Chyme 3 improved P2A stability
P2A Degrades Meropenem in Dog GI Tract

- Fistulated dogs (n=6) received IV meropenem (30 mg/kg)
- P2A (liquid formulation) was delivered orally (1 mg/kg) following antibiotic injection
- Levels of meropenem and P2A in the jejunal contents and serum were measured

<table>
<thead>
<tr>
<th>Treatment (n=3)</th>
<th>Dog</th>
<th>P2A (U/g)</th>
<th>Meropenem (ug/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meropenem Alone</td>
<td>1</td>
<td>NA</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>NA</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>NA</td>
<td>3.0</td>
</tr>
<tr>
<td>Meropenem + P2A</td>
<td>4</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

P2A degraded the meropenem in the dog GI tract and did not affect meropenem serum levels
Conclusions

- SYN-004 is intended as an orally-delivered β-lactamase to protect the gut microbiome from IV penicillins and cephalosporins to prevent *Clostridium difficile* infection

- Clinical validation was achieved with the SYN-004 precursor, P1A

- SYN-004 is progressing though Phase 2 clinical trials

- SYN-004 is a broadly acting cephalosporinase that does not degrade carbapenems

- P2A, NDM, and KPC were evaluated as pipeline candidates

- P2A was chosen based on broad antibiotic degradation and stability in human chyme

- P2A formulation and evaluation in a pig microbiome model is in progress
Acknowledgements

Synthetic Biologics, Inc.

<table>
<thead>
<tr>
<th>Research</th>
<th>Development</th>
<th>Clinical and Nonclinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Monahan</td>
<td>J. Andrew Bristol</td>
<td>Joe Sliman</td>
</tr>
<tr>
<td>Michael Kaleko</td>
<td>Steven Hubert</td>
<td>Olivia Coughlin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amy Sloan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John Kokai-Kun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scott Shapot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heidi Whalen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tracey Roberts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lara Guzman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heather McFall</td>
</tr>
</tbody>
</table>

Ipsat Therapies, Ltd

Pertti Koski

SynPhaGen, Inc.

Todd Parsley