

Stratasys Demonstrates Distributed Manufacturing Capabilities with FLEETWERX and the U.S. Navy During Trident Warrior 25

Forward-deployed printing, supported by reach-back production from Stratasys Direct, helps
Navy reduce downtime and maintain mission readiness

MINNETONKA, Minn. & REHOVOT, Israel--(BUSINESS WIRE)-- Stratasys (NASDAQ: SSYS) recently participated in Trident Warrior 25, the U.S. Navy's flagship Fleet experimentation exercise, demonstrating how advanced manufacturing keeps military units operational at sea and in forward-deployed locations. In partnership with FLEETWERX and the Naval Postgraduate School's Consortium for Advanced Manufacturing Research and Education (CAMRE), Stratasys supported the Joint Advanced Manufacturing Cell (JAMC) with field-deployable 3D printers and on-demand production through Stratasys Direct.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20251106751163/en/

The U.S. Navy and other branches of the military use additive manufacturing to ensure their front-line vehicles and equipment are maintained and in fighting shape. Additive manufacturing allows for quick production of new parts or rapid prototypes that aren't available through other technologies.

The JAMC was the Department of Defense's largest distributed manufacturing demonstration to date, connecting assets across more than 8,000 miles. The exercise allowed the Navy to print parts in theater or reach back to

Stratasys Direct for higher-volume or complex production, creating a wide-ranging ecosystem of support and options across forward-deployed locations.

During the exercise, seven different sites across the global leveraged Stratasys printers, with all parts meeting U.S. military specifications. Trident Warrior 25 also demonstrated that by deploying 3D printers in the field, there is reduced reliance on traditional logistics chains. Lightweight, corrosion-resistant polymer parts were used to create new components, replace broken parts, and produce rapid prototypes in-theater, supported by reach-back production from Stratasys Direct.

FLEETWERX

"Trident Warrior 25 demonstrated the value of a multi-echelon polymer advanced manufacturing network," said Morgan Bower, Program Manager, FLEETWERX. "By pairing field-ready solutions in forward-deployed environments with cutting-edge manufacturing expertise, the team cut lead times for critical components and boosted mission resilience."

Naval Postgraduate School

"Our collaboration with Stratasys and FLEETWERX during Trident Warrior highlights how academia, industry, and the military can work together to validate and accelerate new technologies," said Chris C. Curran, Program Manager, CAMRE. "These efforts are crucial to building resilient, distributed manufacturing ecosystems for the fleet."

U.S. Military

"We're focused on integrating advanced manufacturing into logistics and maintenance operations to enhance readiness and resilience," said Lieutenant Colonel, Michael D. Radigan, U.S. Marine Corps., Marine Innovation Unit. "Exercises like Trident Warrior demonstrate how distributed manufacturing will add resilience to supply chains and deliver increased readiness and lethality to combatant commanders."

Trident Warrior 25 showcased the practical benefits of additive manufacturing while highlighting the importance of hands-on operator training. Through its partnership with FLEETWERX, the Naval Postgraduate School's CAMRE provides sailors with real-world experience using 3D printing, enabling them to apply polymer-based solutions directly to mission-critical challenges and help reduce downtime.

"Trident Warrior 25 showed that combining forward-deployed 3D printing with reach-back production provides fast, reliable, and scalable solutions," said Foster Ferguson, Vice President, Industrial Business, Stratasys. "Supporting both in-theater printing and Stratasys Direct on-demand production helped reduce downtime and maintain readiness, demonstrating practical, scalable solutions across thousands of miles."

About Stratasys

Stratasys is leading the global shift to additive manufacturing with innovative 3D printing solutions for industries such as aerospace, automotive, consumer products, and healthcare. Through smart and connected 3D printers, polymer materials, a software ecosystem, and parts on demand, Stratasys solutions deliver competitive advantages at every stage in the product value chain. The world's leading organizations turn to Stratasys to transform product design, bring agility to manufacturing and supply chains, and improve patient care.

To learn more about Stratasys, visit www.stratasys.com, the Stratasys plog, X/Twitter, LinkedIn, or Facebook. Stratasys reserves the right to utilize any of the foregoing social media platforms, including Stratasys' websites, to share material, non-public information pursuant to the SEC's Regulation FD. To the extent necessary and mandated by applicable law, Stratasys will also include such information in its public disclosure filings.

View source version on businesswire.com: https://www.businesswire.com/news/home/20251106751163/en/

Media and Investor contacts:

Stratasys Corporate, North America & EMEA Chris Reese chris.reese@stratasys.com +1 651 357 0877

Stratasys Corporate, Israel & EMEA Erik Snider <u>Erik.Snider@stratasys.com</u> +972 74 745 6053

Investor Relations Yonah Lloyd Yonah.Lloyd@stratasys.com +972 74 745 4919

Source: Stratasys