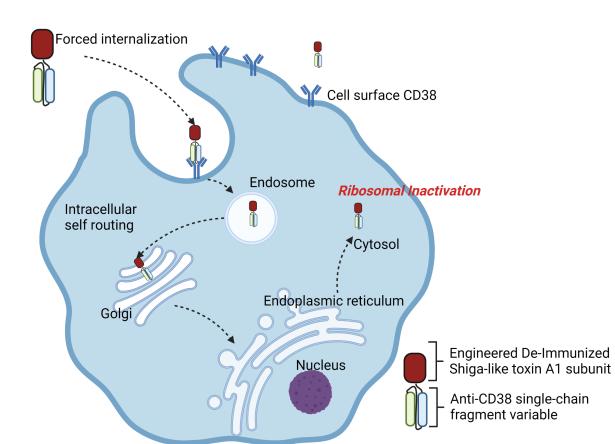


A First-in-Human Phase 1 Study to Evaluate Safety, Tolerability, Pharmacokinetics, and Efficacy of MT-0169, a CD38-targeting Engineered Toxin Body (ETB), in Relapsed or Refractory Multiple Myeloma


Abstract # 1605421

Dickran Kazandjian, MD¹; Scott R. Solomon, MD²; Moshe Y. Levy, MD³; James E. Hoffman, MD¹; Admasu Mamuye, MD, MSc⁴; Soratree Charoenthongtrakul, PhD⁴; Chris Moore, PhD⁴; Silvia Ferrati, PhD⁴; Kevin Kelly, MD⁵ ¹University of Miami; Miami; Miami, FL, USA; ²Northside Hospital Cancer Institute, Atlanta, GA, USA; ³Baylor University of Southern California, Los Angeles, CA, USA; ⁴Molecular Templates, Inc., Austin, TX, USA; ⁴Molecular Templates, Inc., Austin, Inc., Aus

BACKGROUND: CD38 Targeted ETB with Novel Mechanisms of Action

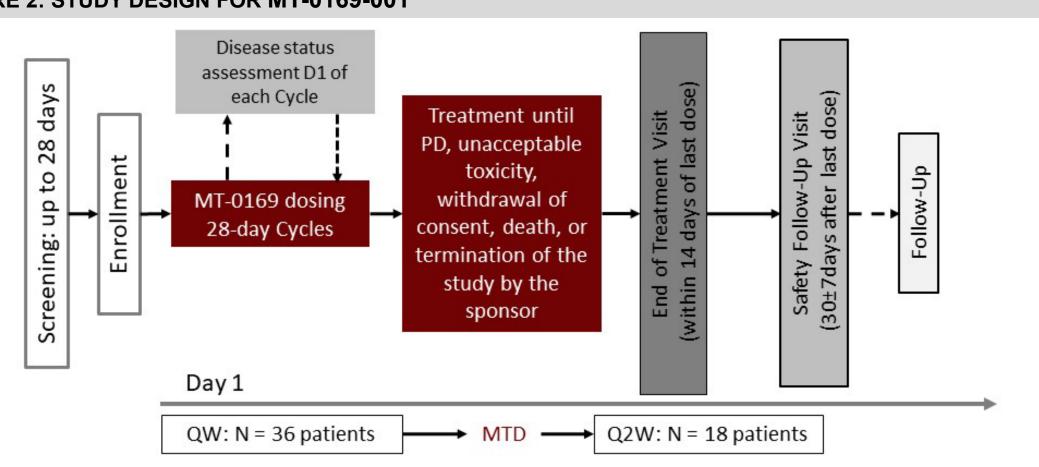
- Engineered toxin bodies (ETBs) are comprised of a proprietarily engineered form of de-immunized Shiga-like Toxin-I A1 subunit genetically fused to antibody binding domains.
- ETBs force internalization, self-route through intracellular compartments to the cytosol, and induce potent cell-kill via the enzymatic and permanent inactivation of ribosomes.
- MT-0169 is a CD38-targeting next generation ETB with improved potency and reduced immunogenicity over firstgeneration ETBs targeting CD20 for hematological tumors (Figure 1).
- This novel mechanism of action provides potential activity of MT-0169 in patients who are refractory to antibodies or other therapies
- MT-0169 may not be subject to resistance mechanisms that exist for other CD38-targeted therapies such as downregulation of CD38 expression or high levels of complement inhibitory protein, CD59.

FIGURE 1: MT-0169 Mechanisms of Action

Compound Name	MT-0169
Description	Fusion Protein
Appearance	Colorless solution
Theoretical Molecular Weight	109,559 Daltons
Theoretical Isoelectric Point (pl)	8.59
Theoretical Extinction Coefficient	179040 M ⁻¹ cm ⁻¹

METHODS: Phase 1 Dose Escalation and Expansion Trial

Primary Objectives:


To evaluate the safety and tolerability of MT-0169 monotherapy in heavily pre-treated patients with RRMM, and establish the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D)

Pharmacokinetics, efficacy (DoR, time to event), safety, immunogenicity, CD38 expression,

Key Eligibility Criteria:

- RRMM patients ≥18 years old, refractory to at least 1 proteasome inhibitor (PI) and at least 1 immunomodulatory drug (IMiD), and at least 1 steroid.
- Patients must have received ≥3 prior lines of therapy, including a PI, an IMiD, and an anti-CD38 therapy such as daratumumab and Isatuximab
- Patients must have normal baseline LVEF, cardiac troponin, NT-proBNP, and QTc
- Patients must have a plasma cell percentage ≤ 50%
- IV infusion once weekly (QW) on Days 1, 8, 15, and 22 of each 28-day cycle **Treatment:**

FIGURE 2: STUDY DESIGN FOR MT-0169-001

MTD: maximum tolerated dose; QW: once weekly; Q2W: once every 2 weeks; RP2D: recommended phase 2 dose; RR: relapsed or refractory; RRMM: relapsed or refractory multiple myeloma.

RESULTS: Patient Cohorts

As of 14 September 2023, 14 patients with RRMM have been treated (**Table 1**) in Part A (dose escalation): 5 patients at

- 50 μg/kg, 4 patients at 5μg/kg, 3 at 10μg/kg, and 2 at 15μg/kg.
- Median age: 68.5 years (range 52-87) • 10 male (71.4%), 4 female (28.6%) patients

TABLE 1: Demographics (N = 14)

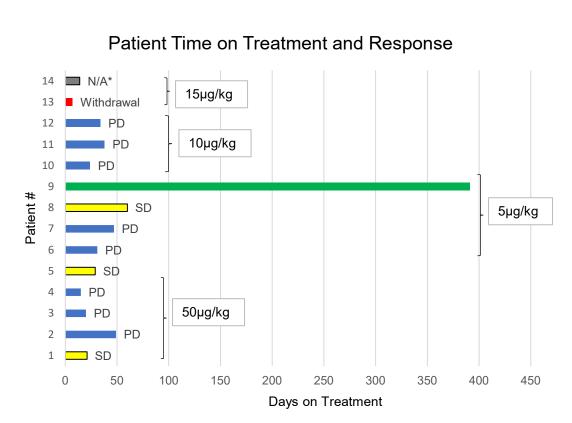
	Sex	Age	Race	ECOG	Disease
	M	67	Black or AA	1	RRMM
	M	82	Not reported	1	RRMM
Cohort 1 (50µg/kg)	F	52	White	1	RRMM
	M	73	Black or AA	1	RRMM
	F	73	White	1	RRMM
Cohort 2 (5µg/kg)	F	63	White	1	RRMM
	M	80	White	1	RRMM
	M	70	White	1	RRMM
	М	54	White	1	RRMM
	М	62	White	0	RRMM
Cohort 3 (10µg/kg)	М	55	White	0	RRMM
	М	58	White	1	RRMM
Calcort 4 (4Evalles)	F	78	White	1	RRNHL
Cohort 4 (15µg/kg)	M	76	White	1	RRMM

RESULTS: Safety

TABLE 2: Grade ≥ 2 Treatment Related AEs

	AE	Grade	Comment(s)			
	Increased AST	2				
	Myocarditis	2	SAE			
	Cardiac troponin I increase	3	DLT			
Cobout 4	Nausea	2				
Cohort 1	Worsening Myalgia	2				
(50µg/kg)	Worsening Anemia	2				
	Fatigue	2				
	Thrombocytopenia	2				
	Low ejection fraction	3	DLT			
Cohort 2						
(5µg/kg)	Neutrophil count decreased	2				
Cohort 3	Anemia	2				
(10µg/kg)	Diarrhea	2				
Cohort 4		•				
(15µg/kg)	No Grade ≥ 2 Treatment Related AEs reported					

TABLE 3: Overall Interim Summary of Treatment Related AEs


Category	Number of Subjects (%)
Safety Analysis Set	14
TEAEs ¹	13 (92.9%)
Related TEAEs ²	7 (50.0%)
TEAEs Grade ≥ 3	5 (35.7%)
Related Serious TEAEs	2 (14.3%)
TEAEs Leading to the End of Treatment	0
Cytokine Release Syndrome (CRS)	1 (7.1%)
nfusion-Related Reaction (IRR)	0

RESULTS: 14 patients treated, One Stringent Complete Response and 3 Stable Disease

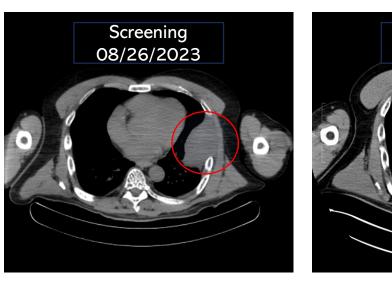
TABLE 4: Prior Lines of Treatment (LoT) and **Best Response to MT-0169**

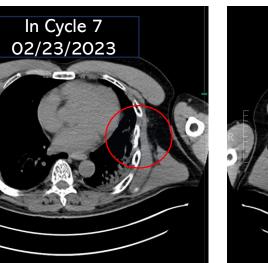
FIGURE 3: Response and Time on Treatment

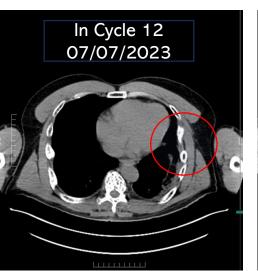
	Prior LoT	Best Response to MT-0169			
	5	PD			
	9 PD				
Cohort 1 (50µg/kg)	13	PD			
(13 3/	6	Stable Disease			
	6	Stable Disease			
	12	PD			
Cohort 2	15	PD			
(5µg/kg)	12	Stable Disease			
	5	Stringent Complete Response			
	10	PD			
Cohort 3 (10µg/kg)	8	PD			
(1 3 - 3)	7	PD			
Cohort 4	7	PD			
(15µg/kg)	7	N/A			

Median number of cycles: 1.0 (range 1-14) *Investigator assessment not currently available.

• Median prior lines of treatment: 7.5 (Range 5-15)


Heavily pre-treated population of patients


Results: stringent Complete Response in 1 Patient with extramedullary disease


- Stringent Complete Response (sCR) in a 54-year-old male patient with RRMM of IgA lambda type diagnosed in July 2015.
- Patient had 5 previous LoT including SCT, Dara/Pom/Dex for about 2 years, and Carfilzomib/Pom/Dex for > 3 years and BCMA/CD3 BiTE (~4 mo)
- Patient had a left 5th rib plasmacytoma and minimal bone marrow disease.
- Palliative radiation therapy given 2 weeks before C1D1 to the left lateral fifth rib lesion.

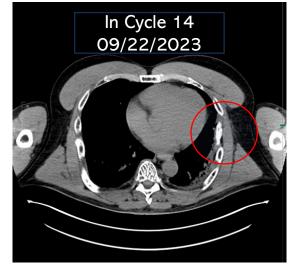
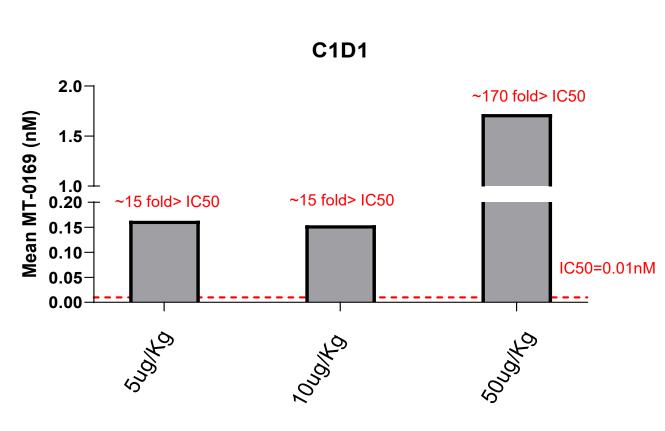

Test	Screening	C1D1	C2D1	C3D1	C4-C12	C13D1
Serum M protein	Measurable	Detectable	None	None	None	None
Serum immunofixation	Positive - IgA	Positive	Positive	Negative	Negative	Negative
	lambda					
Serum FLC ratio (k/l)	<0.26	ND	ND	Normal	Normal	Normal
(0.26 to 1.65)						
Serum IgA (mg/dL)	621.39	246.24	17.1	2.67	\rightarrow	34.46
Hemoglobin (g/dL)	10.1	10.1	13.3	14.3	14 to 15	14.1

FIGURE 4: Baseline and Follow-up PET/CT scans in a patient with sCR



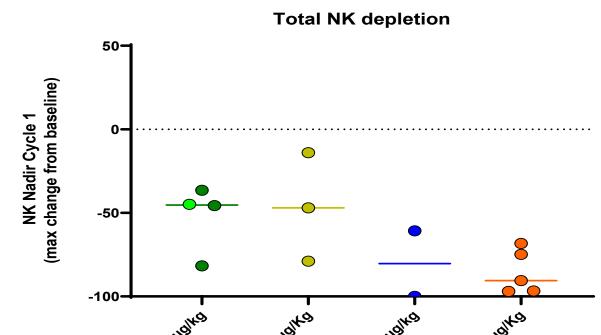
- The large left fifth rib plasmacytoma (red circle) that was present at Screening (baseline) was treated with palliative radiotherapy 2 weeks prior to first dose of MT-0169.
- The plasmacytoma disappeared completely after 3 cycles of treatment and that was maintained through 14 cycles.
- Patient remains on MT-0169 and is currently in Cycle 15.

RESULTS: Pharmacokinetics

FIGURE 5: Approximately dose proportional C_{max}

The observed clinical C_{max} at 50 µg/kg (N = 5) was a mean of 1.72 nM (190 ng/mL), ~170-fold greater than the IC₅₀ demonstrated by the in vitro cytotoxicity studies in human multiple myeloma cells (MOLP-8, NCI-H929, ANBL-6 and RPMI-8226, IC₅₀= 0.00034 to 0.01 nM)

15 μg/Kg PK analysis is ongoing


TABLE 4: Pharmacokinetic Parameters

Dose (μg/Kg)	N	C _{max} (nM)	Folds above IC ₅₀	t _{1/2} (hr)
5	3	0.16	16	NC
10	2	0.15	15	NC
50	5	1.72	172	1

Patients dosed at 5 and 10 µg/kg. Serum samples were collected for PK analysis but had limited quantifiable drug concentrations on Cycle 1 Day 1 due to the lower dose levels and the LLOQ of the assay limiting PK parameters calculations.

RESULTS: Pharmacodynamics

FIGURE 6: Dose Proportional Pharmacodynamic Response

- Profound depletion of the peripheral surrogate biomarker (NK cells, a majority of which expresses CD-38).
- Based on surrogate PD marker, expected efficient targeting of CD-38 positive MM cells

Note: highlighted in green the patient with stringent CR

CONCLUSIONS

- MT-0169 is a unique ETB with a novel and potent MOA targeting CD38 in hematological cancers.
- A stringent Complete Response (sCR) has been observed in a patient with extramedullary
- MT-0169 has an acceptable safety profile with 2 DLTs at 50 μg/kg (a Grade 2 myocarditis and a Grade 3 reduced ejection fraction) both asymptomatic. No similar adverse event observed at lower doses of 5, 10, and 15 µg/kg
- Enrollment is ongoing at 15 μg/kg at multiple US sites

NCT04017130

This study is sponsored and funded by Molecular Templates, Inc.

Please contact Admasu Mamuye at admasu.mamuye@mtem.com for questions or comments.