

A Majority-Owned Subsidiary of Fortress Biotech

Investment Highlights

7 Robust Global IP Portfolio
Targeting \$13B Global Cell

Therapy Market

Novel Bioreactor for Enhancing Potency of Cellular Therapies

In Vitro & In Vivo Proof of Concept Established in Multiple Cell Types

Clinical Development in Rare Pediatric Disease & Other Inflammatory Conditions

Cellvation

Enhanced Potency Based on Established Matrices (↑PGO, ↑IDO, ↓TNFα, ↓Tcells)

Results in Proprietary (Offthe-Shelf) Cell Types with COGS Reduced by Up to 75%

Ability to Use 2-5X Fewer Cells Than Conventional (Clinical) Doses

Overview

- Novel Cellular Therapeutics for Inflammatory Conditions
 - Based on Research from University of Texas Health Science Center (Houston)
- CEVA-D (Mechano-Transduction Device)
 - Shear Stress Up-Regulates Anti-Inflammatory Gene Programs
 - Ability to use fewer, more potent cells for any cell therapy
 - Substantially reduces COGS (vs. conventional MSCs)
 - Proof of Concept Completed In Vitro, In Vivo
 - Tested with Adipose, Amniotic Fluid, Bone Marrow
 - Mechano-Transduced Cells More Effective at Lower Dose
- CEVA-102 (Next Gen Cell Product)
 - "Off-the-Shelf" Mechano-Transduced MSCs
 - Upregulated Anti-Inflammatory Gene Programs
 - More Effective @ Substantially Lower Dose
 - Initial Indication(s): rGVHD, Crohn's, ARDS, CHF

Development Pipeline

CEVA-102 (Mechano-Transduced Cells)	Pre-Clinical	Phase 1	Phase 2	Phase 3	Market Potential
Steroid-Refractory Pediatric Graft Versus Host Disease					\$2.7B Global Market in 2023
Crohn's Disease					\$10B Global Market in 2023
Acute Respiratory Distress Syndrome					\$3B Global Market in 2023
Congestive Heart Failure					\$7B Global Market in 2023
Chronic Low Back Pain					\$10B Global Market in 2023
Other Inflammatory Conditions					>\$5B Potential

CEVA-D: Enhance Potency Reduces COGS

- Enhanced potency based on established matrix
 - PGE2 production
 - IDO production
 - TNFα suppression
 - T cell proliferation suppression
- Increased potency translates into
 - Decreased COGS based on lower dosing requirements
 - Potential to expand into other indications
- Osing of MSCs typically in the 2-10 million cells / kilogram range
- Data generated to-date demonstrates a 2-5X dose reduction
 - Using potency assays of PGE2 production and/or TFNα suppression
- COGS of ~US\$20,000 per billion cells (or 10M cells per kilogram for 100 kilograms)
 - COGS could conservatively be reduced to \$4,000 per dose

CEVA-102: Proprietary Cell Product Initial Indication: Refractory Pediatric Acute GvHD

- Children with steroid-refractory acute graft versus host disease (SR-aGVHD)
- Treatment Options
 - Corticosteroids are first-line therapy for aGVHD
 - Only one approved treatment for disease refractory to steroids
 - No approved treatment in the US for children under 12 years old

Burden of Illness

- Acute GVHD is a life-threatening complication
- Occurs in ~50% of patients receiving allogeneic bone marrow transplants (BMTs)
- Acute GVHD primarily affects skin, GI tract, and liver
- Steroid-refractory aGVHD is associated with mortality rates as high as 90%
- Significant costs associated with extended hospital stays

Market Opportunity

- More than 30,000 allogeneic BMTs performed globally (>20K US/EU) annually, ~20% pediatric
- >4,000 allogeneic BMTs in children and adolescents in US
- >5,000 allogeneic BMTs in children and adolescents in China

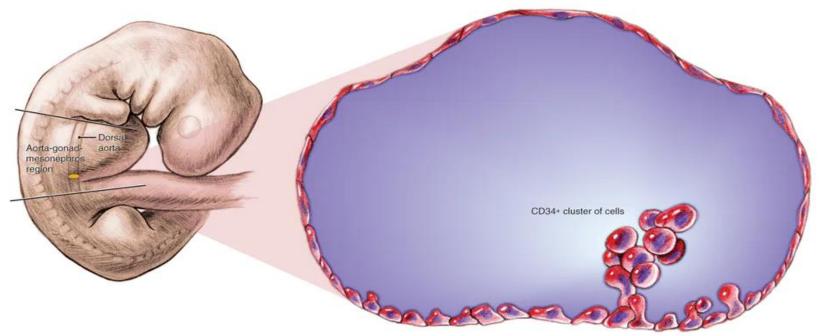
CEVA-102: Proprietary Cell Product Initial Indication: Refractory Pediatric Acute GvHD (cont.)

- Initial Clinical Design
- Inclusion Criteria
 - Male and female, ages of 2 months and 17 years
 - Confirmed aGVHD following BMT
 - Failed to respond to treatment with systemic corticosteroid therapy
 - Grades C and D aGVHD involving the skin, liver and/or gastrointestinal (GI) tract <u>OR</u>
 - Grade B aGVHD involving the liver and/or GI tract, with or without concomitant skin disease
- Number of Patients & Design
 - Single Arm (Open Label) Trial in ~20 patients
 - Initial Therapy: IV CEVA-102 at dose TBD twice per week, for each of four consecutive weeks
 - Continued Therapy: eligible participants to receive add'l once per week infusion for four weeks
 - Twice per week for four consecutive weeks if aGVHD persists or flares
- Endpoints
 - Primary Outcome: Overall Response Rate 28 Days after Initiation of Therapy
 - Complete Response: resolution of aGVHD in all organs
 - Partial Response: organ improvement of at least one stage w/o worsening of other organs
 - Secondary Outcome: Overall Survival at Day 100

Proprietary Bioreactor and Novel Cells Key Data & Technical Details

CEVA-D & CEVA-102: Key Publication

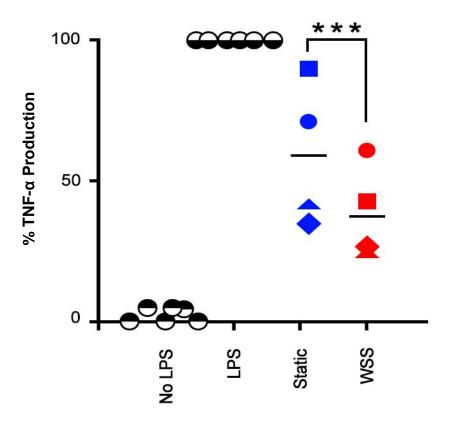
REGENERATIVE MEDICINE

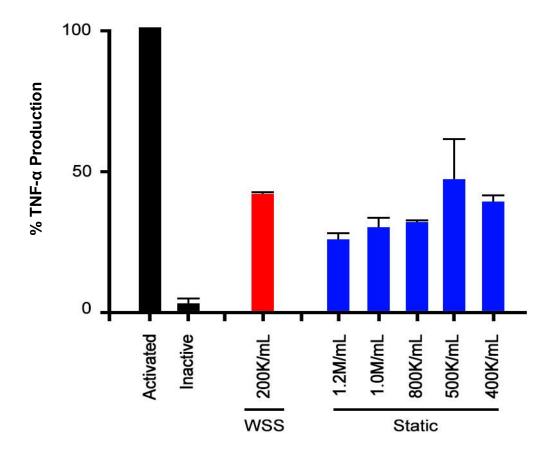

Biomechanical Forces Promote Immune Regulatory Function of Bone Marrow Mesenchymal Stromal Cells

^aDepartment of Pediatric Surgery, Children's Regenerative Medicine Program, McGovern Medical School, ^bCenter for Stem Cell MIGUEL F. DIAZ, a,b ABISHEK B. VAIDYA, a,b SIOBAHN M. EVANS, b HYUN J. LEE, a,b BENJAMIN M. AERTKER, ALEXANDER J. ALEXANDER, KATHERINE M. PRICE, a,b,c JOYCE A. OZUNA, a,b,c GEORGE P. LIAO, KEVIN R. AROOM, HASEN XUE, LIANG GU, a,b RUI OMICHI, a,b,d Supinder Bedi, Scott D. Olson a Charles S. Cox Jr, a,b PAMELA L. WENZEL

- Wall Shear Stress (WSS) Stimulates Anti-Inflammatory Mediators
 - Promotes Signaling To Suppress TNF-α
 - Improves Therapeutic Efficacy of MSCs in Rat Model of TBI

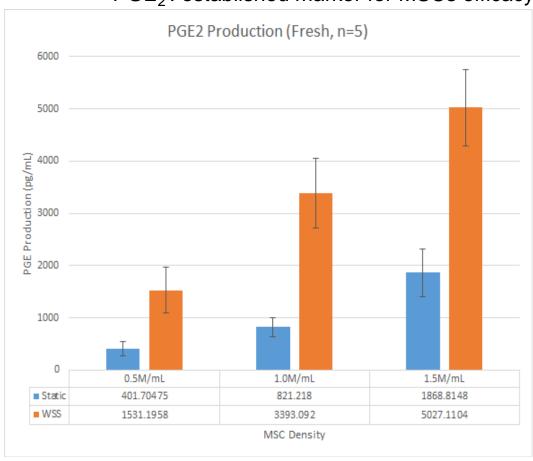
CEVA-D: Rationale


- Create a biological enhancement during the manufacturing process
- Stem cells start out in embryologic aorta-gonad-mesonephros
- Subjected to shear stress that up-regulates specific gene programs

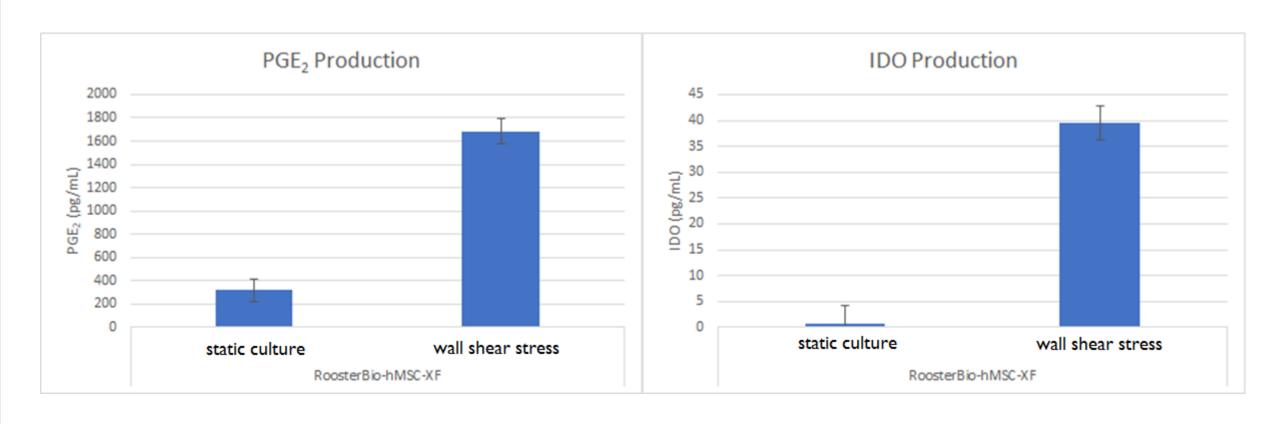

© R&D Systems, Inc.

CEVA-D: Conditioned Cells More Effective @ Lower Dose (published)

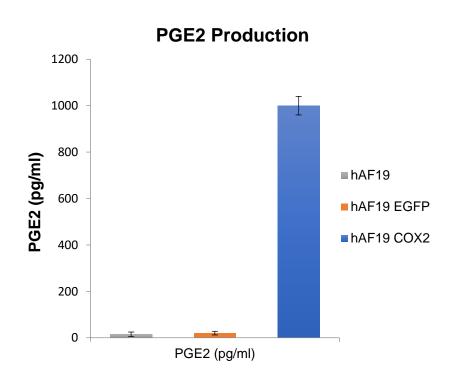
A Suppression of TNF- α

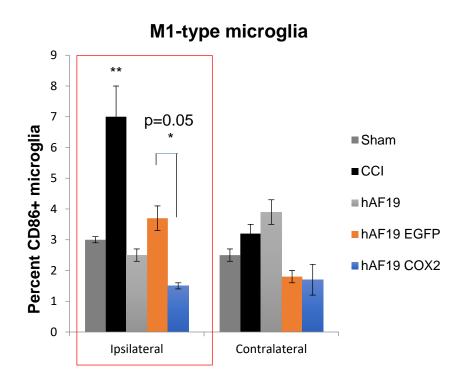



B Dosing for Equivalence of TNF- α Suppression


CEVA-D: Increases PGE₂ Production

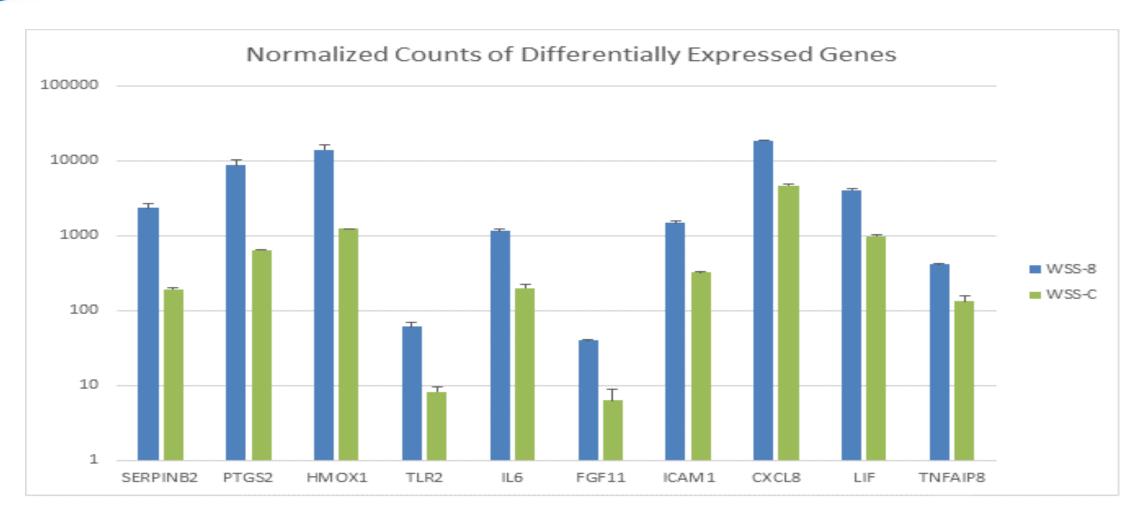
- 3x Increase in PGE₂ Production
 - Cells treated for three hours in CEVA-D bioreactor
 - PGE₂: established marker for MSCs efficacy




CEVA-D: Increases PGE₂ and IDO Production

Importance of PGE₂ Expression

- Genetically engineered MSCs expressing PGE₂ better suppress microglial M1 polarization
- MAPCs suppress GVHD via PGE2 synthesis (Highfill et al, *Blood* 2009)



CEVA-102 vs. Static MSC

			Static-MSC			WSS-MSC
	Media	TNF-α	IFN-γ	IL-1b	Combo	Media TNF-α IFN-γ IL-1b Combo
PGE ₂	302.55 ±	459.61 ±	317.42 ±	331.33 ±	647.18 ±	1038.14 ± 1351.23 ± 1381.71 ± 2427.72 1610.97 ±
(pg/mL)	55.33	258.39	19.93	48.32	290.60	336.90* 520.99* 680.51* ±311.15* 272.09*
HO-1	201.31 ±	151.49 ±	161.61 ±	172.55 ±	153.51 ±	3855.85 ± 3967.68 ± 4055.52 ± 4428.55 ± 3303.80 ±
(pg/mL)	29.73	3.59	10.29	17.22	29.77	158.00* 215.73* 275.17* 290.26* 238.97*
Rel. TNF-α Prod.	0.53 ± 0.23	N.D.	N.D.	N.D.	N.D.	0.17 ± N.D. N.D. N.D. N.D.
Rel. IFN-γ Prod.	0.58 ± 0.03	N.D.	N.D.	N.D.	N.D.	0.59 ± 0.12 N.D. N.D. N.D. N.D.

^{*} Denotes significant difference from Static-MSC:Media

CEVA-D Cells: Potency

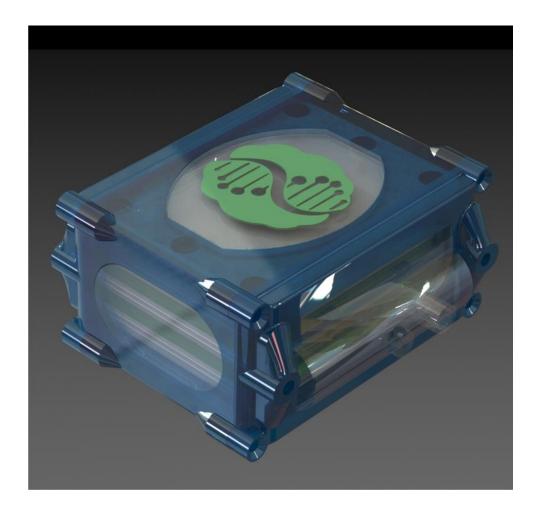
- RNA-Seq Demonstrates Enhanced Potency of CEVA-102 Versus Static Cells
 - Log-fold increases in key anti-inflammatory signals
 - Confirms published pre-clinical data with cGMP compliant cell line

CEVA-D Cells: Characterization

- Consistent Expression of Key Cell Surface Markers After Mechano-Transduction
 - Repeated passages & differentiation often reduce anti-inflammatory potency

Sample	CD34	CD73	CD90	CD105	CD146
hBM-MSC 5204 (Research Grade Control) [p3]	0.17	99.99	99.93	99.08	100
RoosterBio hBM- MSC (GMP Grade Control) [p4]	0.06	100	99.89	99.72	99.86
RoosterBio hBM- MSC (CEVA-102) [p4]	0.11	99.93	99.79	99.58	99.89

CEVA-D: Biology of Mechano- Transduced Cells

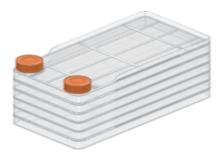

- Enhanced anti-inflammatory activity (Potency)
 - Broad set of gene programs up-regulated
 - Gain and loss of function of PGE2 confirms importance
- MSC Source Agnostic
- Reproduced under cGMP conditions, release
- Potency assays linked to outcomes in in vivo models

CEVA-D: Development Status and Intellectual Property

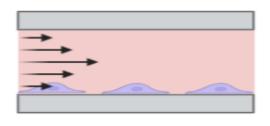
- 2D Device: functioning with defined manufacturing process
- 3D Device: in prototype development phase
- All devices and methods backed by robust IP protection
 - Methods & Apparatus for Conditioning Cell Populations
 - Issued / Allowed: Australia, China, Japan, Russia, US
 - Pending: Brazil, Canada, EP, Hong Kong, Israel, Korea
 - Earliest Expiration Date: June 23, 2036

CEVA-D: Scale Up

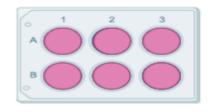
- Production of Single Dose (CEVA-102)
- Channel Dimensions: 7.50 x 8.00 x 0.04 cm
 - ~½ Clinical-scale
 - Seeding Density: 60k MSC / cm²
- All parts designed for injection molding

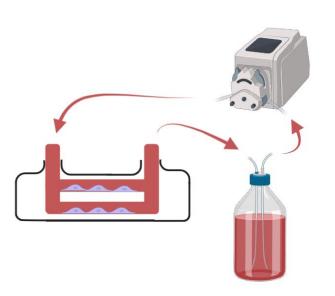


CEVA-D: Manufacturing Work-Flow

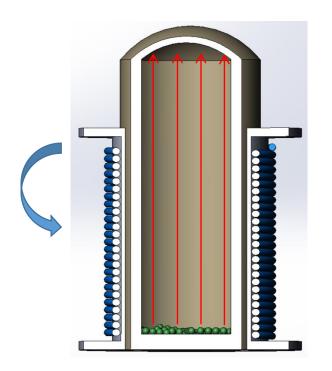

Cell Expansion

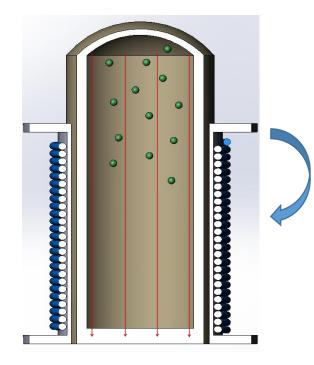
WSS Conditioning


Potency


WJ-MSC Expansion in conventional tissue culture plastic up to passage 4

Conditioning of adherent MSC in bioreactor with 8 dyne/cm² for 3 hrs


WSS-MSC & Static-MSC assessed via protein production, Splenocyte Co-Culture, & RNA-Seq



CEVA-D: 3D Scale-Up and Process Rendering

- Rather than keeping cells still and moving fluid (2D), the opposite is done for 3D
- 3D cannot be accomplished with stirrer tank as beads and cells move with fluid
- Strategy based on use of magnetic beads with pulsatile current
 - Produces cell movement through the fluid
 - Generates shear stress in large-volume bioreactor
- No moving parts
- No cleaning or disinfection (simply discard canister after use)
- Programmable shear profiles

- Magnetic beads (depicted in green) are coated with cells
- Spiral current (see blue arrows) creates magnetic field
- Magnetic field accelerates movement of beads and produces shear stress

Investment Highlights

Robust Global IP Portfolio
Targeting \$13B Global Cell
Therapy Market

Novel Bioreactor for Enhancing Potency of Cellular Therapies

In Vitro & In Vivo Proof of Concept Established in Multiple Cell Types

Clinical Development in Rare Pediatric Disease & Other Inflammatory Conditions

Cellvation

Enhanced Potency Based on Established Matrices (↑PGO, ↑IDO, ↓TNFα, ↓Tcells)

Results in Proprietary (Offthe-Shelf) Cell Types with COGS Reduced by Up to 75%

Ability to Use 2-5X Fewer Cells Than Conventional (Clinical) Doses