Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140†

Rudramani Pokhrel, a Nisha Bhattarai, a Prabin Baral, a Bernard S. Gerstman, b, ab Jae H. Park, c Martin Handfield, c and Prem P. Chapagain a, b,*

The emergence of antibiotic-resistance is a major concern to global human health and identification of novel antibiotics is critical to mitigate the threat. Mutacin 1140 (MU1140) is a promising antimicrobial lantipeptide and is effective against Gram-positive bacteria. Like nisin, MU1140 targets and sequesters lipid II and interferes with its function, which results in the inhibition of bacterial cell wall synthesis, and leads to bacteria cell lysis. MU1140 contains a structurally similar thioether cage for binding the lipid II pyrophosphate as for nisin. In addition to lipid II binding, nisin is known to form membrane pores. Membrane pore formation and membrane disruption is a common mode of action for many antimicrobial peptides, including galidermin, a lantibiotic peptide with similar structural features as MU1140. However, whether and how MU1140 and its variants can form permeable membrane pores remains to be demonstrated. In this work, we explored the potential mechanisms of membrane pore formation by performing molecular simulations of the MU1140–lipid II complex in the bacterial membrane. Our results suggest that MU1140–lipid II complexes are able to form water permeating membrane pores. We find that a single chain of MU1140 complexed with lipid II in the transmembrane region can permeate water molecules across the membrane via a single-file water transport mechanism. The ordering of the water molecules in the single-file chain region as well as the diffusion behavior is similar to those observed in other biological water channels. Multiple complexes of MU1140–lipid II in the membrane showed enhanced permeability for the water molecules, as well as a noticeable membrane distortion and lipid relocation, suggesting that a higher concentration of MU1140 assembly in the membrane can cause significant disruption of the bacterial membrane. These investigations provide an atomistic level insight into a novel mode of action for MU1140 that can be exploited to develop optimized peptide variants with improved antimicrobial properties.

I. Introduction

The emergence of antibiotic-resistant variants of pathogenic bacteria has posed a major threat to human health.1 Discovery of novel antibiotics, especially those with novel mechanisms of action, is critical to mitigate the threat of antibiotic-resistance.2 Antibiotics containing lanthionine, referred to as lantibiotics,3 constitute a promising class of drugs to battle the threat of antibiotic resistance. These cationic antimicrobial peptides are effective against Gram-positive bacteria which have negatively charged membrane surfaces.4,5 Most of the current antimicrobial peptides target bacterial cell membrane. The amphipathic nature of many antimicrobial peptides allows them to interact with both the hydrophobic tail as well as hydrophilic phospholipid groups.6 Some antimicrobial peptides such as mutacin and nisin target lipid II which is essential for bacterial cell wall synthesis.5,7,8 Lipid II transports peptidoglycan subunits from the cytoplasm to the outside of the bacterium to form the peptidoglycan matrix which is the main component of the cell wall.9 Thus, these antimicrobial peptides interfere with the function of lipid II and inhibit the cell wall synthesis, ultimately leading to bacteria stasis or lysis.

Lipid II has two binding moieties for antimicrobial peptides. One is the peptide moiety that is the target for current clinical drugs, including vancomycin, and the other moiety is the pyrophosphate group targeted by several lantibiotics.10 Resistant strains...
of bacteria have been able to change peptide composition in a way that impedes the binding ability of antibiotics that target the peptide moiety but without affecting the cell wall synthesis. For example, lipid II mutations in the peptide moiety rendered vancomycin ineffective by destabilizing the vancomycin–lipid II complex.11,12 Interestingly, the composition of the pyrophosphate moiety has remained unaltered through evolution, even in the presence of a significant selective pressure resulting from the widespread use of antibiotics. Therefore, it is worthwhile to focus on the development of novel antibiotics that target the phosphate moiety of lipid II. This emphasizes the importance of research on lantibiotics to develop the next generation antibiotics to tackle antibiotic-resistant pathogens.

The most extensively studied lantibiotic compound is nisin. It is proposed that the antimicrobial activities of nisin are attributed to two modes of action: (1) vancomycin-like blockage of the peptidoglycan synthesis by binding to and abdication of lipid II and (2) membrane pore formation.8,13–15 For nisin, the first mechanism has been well established, while the second mechanism has attracted interest in the field. Very recently, an NMR study conclusively showed that compared to the solution state, the nisin–lipid II complex is drastically different in the pharmacologically relevant membrane environment where nisin forms a pore complex with lipid II in membranes.16,17 Although nisin has been an effective antimicrobial peptide and used as a food preservative for decades, its degradability and toxicity, along with other immunogenicity and pharmacokinetic issues have limited its use as an antibiotic drug.18 Therefore, alternate and optimized lantibiotics that are more suitable for clinical use are highly sought after. One such compound that has emerged as a promising antibiotic is Mutacin 1140 (MU1140). Mutacin 1140 is naturally produced by the Gram-positive bacterium \textit{Streptococcus mutans}19 and possesses low levels of toxicity, good pharmacokinetics, and a high level of stability.20,21

Recently, at least 17 variants of MU1140 were identified with equal or superior \textit{in vitro} susceptibility profiles against the Gram-positive pathogen \textit{C. difficile} in animal model, compared to vancomycin.20,22,23 The stability and efficacy of MU1140 can be enhanced by the replacement of amino acids of its chain.20,24 Similar to nisin, MU1140 is believed to traffic lipid II, thereby interfering with bacterial cell wall synthesis.5,25 Mutacin-1140 contains a structurally similar thioether A/B rings as in nisin that provide the binding cage for the pyrophosphate of lipid II and therefore also binds with lipid II. It is shown that nisin complexed with lipid II can form membrane pores.16,17 Similarly, gallidermin, a lantibiotic that is structurally similar to, and the same length as MU1140 (22 amino acids long), has been shown to form functional membrane pores that depolarize DOPC/DPPOPC membranes, likely by allowing sodium and/or potassium to diffuse through the membrane.26 Its ability to form pores correlates with the membrane thickness and composition; \textit{i.e.} the less thick the membrane is, the more likely it is to result in pore formation.26 In addition to these, pore formation is a common mode of action for most antimicrobial peptides.27 However, early work on MU1140 suggested that it may not form functional membrane pores because of its size.19,25 Therefore, whether and how MU1140 and its variants could form the permeable membrane pores remains to be determined. In this work, we explored the potential mechanism of membrane pore formation by performing molecular dynamics (MD) simulations of the MU1140–lipid II complex in the bacterial membrane. Despite significant structural/sequence differences between the nisin and MU1140 C-terminal tails, our results show that MU1140–lipid II complexes are able to form functional, water permeating membrane pores. These investigations, for the first time, provide an atomistic level insight into a novel mode of action for MU1140 that can be exploited to develop optimized peptide variants with improved antimicrobial properties and therapeutic profile.

II. Methods

1. Molecular model of Mutacin 1140–lipid II complex

The NMR structure of the nisin–lipid II complex (PDB ID 1wco) was used as a template to model the MU1140–lipid II complex (Fig. 1), preserving the structure of the pyrophosphate binding cage and the lantibiotic–lipid II interactions. With the target being the pyrophosphate moiety, a dipeptide (Ala, Glu) was used as a base to model the MU1140–lipid II complex (Fig. 1), preserving the structure of the pyrophosphate binding cage and the lantibiotic–lipid II interactions. With the target being the pyrophosphate moiety, a dipeptide (Ala, Glu) was

![Fig. 1](image-url)
Fig. 1 Schematic representation of amino acid sequences of (a) nisin and (b) MU1140 chains. The NMR structure of (c) the nisin–lipid II complex8 and (d) the modeled structure of the MU1140–lipid II complex. The lantibiotic chains are shown in blue and lipid–II in orange. The phosphate and oxygen atoms in the pyrophosphate moiety are highlighted in gray and red respectively.
used for the peptide moiety and a longer bactoprenol tail was used that provided a stable anchorage during membrane-lipid II simulation.

2. Molecular dynamics simulations
We used two different types of membrane systems: (1) a highly mobile membrane-mimetic (HMMM) model for investigating membrane insertion and (2) an all-atom membrane with full-length lipids for investigating the membrane pore mechanics. The membrane system was generated using the CHARMM-GUI membrane builder web server. The lipid bilayer contained POPE and POPG lipids in the ratio of 1:3 to represent the membrane of Gram-positive bacteria. For the HMMM model, POPE and POPG lipids in the ratio of 1:3 to represent the membrane of Gram-positive bacteria. For the HMMM model, POPE and POPG lipids in the ratio of 1:3 were placed in the HMMM membrane system was used that provided a stable anchorage during membrane-lipid II simulation.

3. Structural comparison of MU1140 and nisin
As with other lantibiotics chains, MU1140 contains unsaturated amino acid residues dehydroalanine (Dha), dehydrobutyryine (Dhb), aminobutyric acid (Abu), and a C-terminal aminovinyl-cysteine (AviCys). It contains thioether rings connecting two amino acids by a sulfur bridge, with Ala-S-Ala as the lanthionine derivative (Lan) and Abu-S-Ala as the 3-methyl-lanthionine (MeLan) derivative. Conserved disulfide-bonds are found in a wide range of amphiphilic antimicrobial peptides and viroporins, and are important for membrane insertion and their pore-forming. In Fig. 1, we compare the sequence and structure of the nisin and MU1140 chains. Compared to the 34-residue nisin, MU1140 is shorter, with only 21 amino acids. Nisin contains five thioether rings, whereas MU1140 contains three thioether rings and a forth ring formed by heteroatoms at the C-terminal tail (Fig. 1a and b). Nisin has three Lys residues giving a net 3+ charge (excluding the N-terminus group). In contrast, MU1140 contains a net 2+ charge due to two basic amino acids Lys and Arg. The anionic pyrophosphate moiety of lipid II with a net 2− charge provides the binding target for the cationic MU1140. The hydrophilic head group of lipid II consists of two sugar linked rings N-acetylglucosamine (GlcNAc), N-acetylmuramic acid (MurNAc), and pentapeptides connected to MurNAc. The hydrophobic tail, bactoprenol is linked to MurNAc via a pyrophosphate moiety. The lipid II binding thioether rings in nisin and MU1140 (positions 3–11) are nearly identical, with only one amino acid difference (Ile vs. Trp in position 4). Therefore, we used the structure of the nisin–lipid II complex (PDB ID 1wco) as a template for modeling the MU1140–lipid II complex, preserving the structure of the pyrophosphate binding cage and the lantibiotic–lipid II interactions. The NMR structure of the nisin–lipid II complex is shown in Fig. 1c and our model for the MU1140–lipid II complex (energy minimized and equilibrated structure) is shown in Fig. 1d.

2. MU1140 interactions with the membrane surface and lipid II
To investigate the interactions of MU1140 chain with the membrane surface when it is bound with lipid II in the membrane, we placed the MU1140–lipid II complex in the membrane in such a way that the MU1140 chain lies horizontally on the outer surface of the lipid bilayer, and the lipid II is inserted into the membrane, aligned parallel with other lipids in the lipid bilayer (Fig. 2a). The MU1140-membrane surface interactions are relevant not only for its lipid II trafficking mechanism but also for the initial phase of its peptide insertion into the membrane. We performed a 500 ns simulation of the complex in the bacterial membrane composed of POPG and POPG in the ratio of 1:3.

We observed that the MU1140–lipid II complex remained intact throughout the simulation, with strong interactions between MU1140 and the pyrophosphate moiety of lipid II. At the end of the 500 ns simulation, residues in the third thioether ring as well as the C-terminal segment show partial insertion into the membrane bilayer (Fig. 2a). In Fig. 2b, we plot the percentage of time during the MD simulation that major amino acids in MU1140 form hydrogen bonds with the membrane as well as with lipid II (inset). The MU1140 cationic side chain of Lys2 makes the major salt-bridge interaction and the backbone NH groups of Phe1 and Lys2 provide strong hydrogen bonding with the pyrophosphate group in lipid II (Fig. 2b, right). As displayed in Fig. 2c, MU1140 makes approximately three salt-bridge or hydrogen bonds interactions with lipid II throughout the simulation.
In addition, the bar graph for the MU1140-membrane hydrogen bond in Fig. 2b shows that MU1140 is able to strongly interact with the bacterial membrane surface through significant hydrogen bonding. The major MU1140-membrane hydrogen bond contribution comes from the MU1140 Arg13, followed by the hetero-group (AviCys) at the C-terminal tail and the backbone interactions of Tyr20. Overall, MU1140 makes about 12 hydrogen bonds on average with the membrane, as shown in Fig. 2c. In Fig. 2d, we plotted the number of MU1140 contacts with lipid II within 3.5 Å. MU1140 has a nearly constant number of interactions with POPE throughout the simulation, whereas interactions with POGG shows a slight increase after 200 ns.

As a control, we performed a separate simulation for the MU1140 chain on the membrane surface while it is not complexed with lipid II. As shown in Fig. S1 (ESI†), the MU1140 chain interacts with the membrane surface but the partial insertion of the hydrophobic groups is not as pronounced as in MU1140 complexed with lipid II (Fig. 2a). This suggests that the lipid II interactions in the pyrophosphate moiety allows the MU1140 chain to stabilize on the membrane surface and facilitate membrane insertion.

3. Membrane insertion of MU1140

A net cationic charge and a high fraction of the hydrophobic residues are two common features of antimicrobial peptides (AMPs) and the hydrophobicity can allow the peptide chain to insert into the membrane. MU1140’s close analogs, nisin and gallidermin are both shown to form membrane pores. Based on the similarities of lipid II binding and the peptide composition with respect to nisin, epidermin, and gallidermin, we conjectured that MU1140 can also form functional membrane pores. The observation of peptide insertion in an all-atom computational model is difficult due to temporal limitations of unbiased MD simulations. A 500 ns of detailed all-atom simulation with full-length lipids allowed only a partial insertion of MU1140. To facilitate the membrane insertion in reasonable computational timescales, we used a highly mobile membrane-mimetic (HMMM) model. The HMMM membrane model uses lipids with shortened tails, floating on a layer of 1,1-dichloroethane (DCLE) representing the hydrophobic inner core of the lipid bilayer. The fluidity of the system allows significantly enhanced lipid diffusion that can provide unbiased lipid-binding of the protein well under a microsecond. With the MU1140 chain aligned along the membrane surface (Fig. 3a) and the lipid II aligned parallel to the lipids, we performed a production run for 1.3 μs. Fig. 3a shows the configuration of the complex in the beginning of the simulation (left panel) and after 1 μs of simulation (right panel). Fig. 2b shows the vertical distance (\(z\)-axis) between Tyr20 and the center-of-mass of the lipid bilayer (representing the lipid bilayer’s mid-point). After about 800 ns, the MU1140 chain begins to insert into the membrane and by around...
1 μs, most of the chain that is not interacting with the lipid II pyrophosphate cage is in the transmembrane region, as can be seen in Fig. 3a (right) and the decreasing distance from the lipid bilayer’s mid-point in Fig. 3b. These results show that the MU1140 chain prefers the hydrophobic transmembrane region compared to the outer surface of the membrane.

4. Membrane pore formation and water permeation by MU1140

After confirming that the hydrophobic transmembrane region is a favorable environment for the MU1140 chain, we investigated its pore forming ability. While insertion is greatly facilitated by the HMMM membrane, the inserted MU1140 chain is indifferent towards aligning in any specific orientation because of the fluidity of the transmembrane DCLE that does not restrict the peptide chain to a vertical orientation as the full-length lipids would. Therefore, investigation of the pore formation requires a bilayer with full-length lipids. One way to set this up is to wait for a random even that vertically orients the MU1140 chain in the HMMM membrane and then add the lipid tails. To expedite this process, we set-up a MU1140–lipid II complex in a conventional lipid bilayer with full-length lipids but with the MU1140 already inserted and aligned vertically in the transmembrane region. We note that use of enhanced sampling methods such as accelerated molecular dynamics may allow investigations of membrane insertion without having to reset the system.

Fig. 4a shows the initial configuration of the MU1140–lipid II complex in the bacterial membrane composed of POPE and POPG in the 1:3 ratio. We performed a 500 ns simulation for the system and observed a significant water permeation even with a single complex of MU1140 and lipid II. Fig. 4b shows a representative frame at the end of the 500 ns simulation which shows water molecules along the MU1140 chain in the transmembrane region.

Before the simulation began, only the N-terminal part of the peptide is exposed to water on the outside of the bacterial membrane and the C-terminal is buried in the transmembrane region as shown in Fig. 4. Within a 100 ns, the lower end of MU1140 inside the membrane is in contact with water molecules below the membrane (intracellular space). Despite having a significantly shorter chain compared to nisin, MU1140 is able to span the transmembrane region and create a channel for water permeation. As with gallidermin that also harbors a shorter chain, the water permeation and pore formation by MU1140 likely correlates with the membrane thickness. The bactoprenol tail of lipid II has no particular preference in its orientation and is quite flexible in the transmembrane region. Although lipid II interactions may facilitate membrane insertion of MU1140, simulations of MU1140 chain (not complexed with lipid II) in the transmembrane region showed similar water permeation behavior (Fig. S2, ESI†).

5. Single-file water permeation

To explore the mechanism of water permeation, we examined the residues and the groups involved in interactions with water. We created a list of all water molecules that come within 3.5 Å of peptide residues and calculated the number of hydrogen bonds between the peptide and water. Fig. 5 displays a snapshot of a typical frame that shows a single-file water permeation between the outer and inner layers of the membrane. Movie S1 (ESI†) shows how water molecules permeate across the bilayer via hydrogen bonding with MU1140 residues. Single-filed hydrogen bonded chains of water are often observed in nanoscale confinements such as in carbon nanotubes and protein channels (e.g., the aquaporin gramicidin) and are of great interest because of their unusual properties. As shown in Fig. 5, water molecules in the single-file chain region are considerably ordered, similar to the behavior observed in other biological water channels such as gramicidin A. The importance of the single-file water is underscored by its role in transporting ions. In gramicidin A, the ability of single-file water to stabilize K⁺ ions and transport it through the channel is due to the solvation of the ion by two single file chains on either side.

Unlike fully non-polar carbon nanotubes, biological water pores are lined with backbone carbonyl and amide groups that can form hydrogen bonds with water molecules. As here, water molecules in the single-file region predominantly hydrogen-bond with carbonyl groups of MU1140 residues. With larger

Fig. 4 MU1140–lipid II complex in a bacterial membrane: (a) initial configuration of the complex and (b) a configuration at the end of 500 ns simulation. The phosphorus atoms of POPE are highlighted as green spheres and that of POPG as gray sphere. The water molecules within 4 Å of the peptide are highlighted as red spheres.

Fig. 5 (a) A representative snapshot of the water permeation along the MU1140 chain (cyan) in the transmembrane region. Lipid II is shown in orange. (b) Percentage of hydrogen-bonding between MU1140 residues and water molecules, showing MU1140 hydrogen bonds with backbone CO (red), backbone NH (blue), and sidechain (SC) (green). Only the phosphate atoms of the lipids are displayed for clarity.
assembly of MU1140–lipid II complexes, transport of cations may be possible because the polar lining by the backbone carbonyl groups in MU1140 may form hydrogen bonding with monovalent cations and facilitate ion transport as shown for epidermin and gramicidin.

The MU1140 structure inside the membrane shows a con-caving at and below the second thioether ring and this allows a proper orientation of CO and NH groups of MU1140 residues so that the water molecules can line along the chain (Fig. 5a). We calculated the % hydrogen bond between MU1140 groups and water molecules and plotted the results in Fig. 5b. Three residues Pro9, Ala11, and Ala16 are oriented away and make almost no contacts with water. Since Phe1 and Asn18 are close to the bulk water, they are found to form the most hydrophilic bonds with water. While only the backbone groups of Phe1 are involved in hydrogen bonding, Asn18 sidechain makes significant hydrogen bonding with water. It is found that substitution of Phe1 with other residues does not negatively impact MU1140 activity, possibly because backbone hydrogen bonding is unaffected. Based on the hydrogen bonding pattern, three different transmembrane regions can be observed along the chain: (1) residues 1–5, (2) residues 6–13, and (3) residues 14–18. Along the sequence Leu6 to Arg13, considerably ordered single-file water is observed. The residues Pro9, Ala11, and Ala16 are oriented away and make almost no contacts with water. Since Phe1 and Asn18 are close to the bulk water, they are found to form the most hydrophilic bonds with water. While only the backbone groups of Phe1 are involved in hydrogen bonding, Asn18 sidechain makes significant hydrogen bonding with water. It is found that substitution of Phe1 with other residues does not negatively impact MU1140 activity, possibly because backbone hydrogen bonding is unaffected. Based on the hydrogen bonding pattern, three different transmembrane regions can be observed along the chain: (1) residues 1–5, (2) residues 6–13, and (3) residues 14–18. Along the sequence Leu6 to Arg13, considerably ordered single-file water is observed. The MU1140 hydrogen-bonding with the single-file water is found to be with Leu6 (CO), Ala7 (CO), Abu8 (CO), Gly10 (NH), and Arg13 (CO). Due to irregular ordering of backbone carbonyl and amide groups, water passage below Ala12/Arg13 to the bulk occurs in a less ordered fashion and can involve a sequence of as many as four water molecules hydrogen bonded between Ala12 and Phe17. Due to the proximity to the bulk water, the Phe1 to Dhb5 as well as Asn18 to HET21 have the water that is less ordered.

Significant water ordering and hydrogen bonding around the mid-region of the lipid bilayer causes a longer residence times for the water molecules, with major bottlenecks for the ion passage at Leu6 and Arg13. In Fig. 6, we plotted the trajectory for a few representative water molecules that successfully permeated along the z-axis across the lipid bilayer. Water transport is observed in both directions. The concavity of the MU1140 in the mid-region allows relatively more extensive hydrogen bonding for the water molecules. We also plotted the histogram from all the successful water molecules along both directions. The concavity of the MU1140 in the mid-region causes a longer residence times for the water molecules to fully traverse the lipid bilayer. The mean first passage time (MFPT) for the water molecule was found to be ~23 ns, giving a diffusion constant of $D \approx 0.03 \text{ nm}^2 \text{ s}^{-1}$ (i.e. $3 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1}$) which is two orders of magnitude slower than the water diffusion in nonpolar carbon nanotubes with $D \approx 3 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$, here, the diffusion constant was calculated using $D = \frac{L^2}{12t}$, where $L = 2.8 \text{ nm}$ is the channel length and $t = 23 \text{ ns}$ is the first passage time. The diffusion constant is similar to the values determined for other biological single file water channels such as aquaporin-1 ($D \approx 4 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1}$), and gramicidin ($D \approx 3 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1}$).

6. Water permeation in multimeric assembly of MU1140–lipid II complexes

In many membrane binding and pore-forming amphipathic peptides, pore formation occurs only if the peptide concentration exceeds certain threshold values. In a physiological environment, multiple MU1140 and lipid II molecules are likely to assemble in the membrane. While nisin has 1:1 binding stoichiometry in solution, it is suggested to form membrane pores with a 2:1 ratio of nisin–lipid II assembly. However, there is no information available about MU1140–lipid II assembly. To investigate the multimeric assembly of MU1140–lipid II and the behavior of water permeation, we set up additional systems with two and four MU1140–lipid II complexes in the bacterial membrane. Both systems were run for 500 ns each. For each set up, MU1140–lipid II complexes were placed in the membrane with lipid II chains facing away from each other and MU1140 facing towards each other (Fig. 7). We observed that the MU1140 chains drifted towards each other and water molecules permeated across the lipid bilayer. Movie S2 (ESI†) shows this process for the four-chain system. In Fig. 7, we highlighted (with red spheres) the water molecules within 3.5 Å of MU1140 residues with red spheres. Before the simulation, only a few water molecules above the upper lipid layer are in the vicinity of MU1140. At the end of the 500 ns simulations, both the two-chain system and the four chains systems show significant water in the transmembrane...
Interestingly, the lipid molecules near the MU1140–lipid II complexes were pulled inward. The four MU1140–lipid II complexes show a significant shrinkage or distortion in the membrane thickness (Fig. 7b and c). Due to the short length of MU1140, the membrane is noticeably tapered near the MU1140–lipid II assembly. This is also displayed by the number density of water molecules which shows a narrowing of the density profile with the increase in the number of MU1140 chains (Fig. 7d). Fig. 7d also shows a significantly higher population of water molecules in the transmembrane region for the two and four complexes.

An independent, additional set of simulations for one, two, and four complexes yielded quite similar results of water density profile as well hydrogen bonding pattern (Fig. S3, ESI†). Here, the number density of water molecules is calculated using the density profile plugin in VMD52 and represents the number of atoms of water divided by the total number of atoms in the system projected along the z-axis. The displayed number densities are obtained by averaging over the last 300 ns of the MD trajectories.

Fig. 7 Assemblies of (a) two and (b) four complexes of MU1140–lipid II in the bacterial membrane at the beginning and end of the 500 ns simulations. MU1140 chains are colored by residue types, lipid II chains are highlighted in yellow, and the water molecules within 3.5 Å of MU1140 are highlighted as red spheres. As in Fig. 4, the phosphorus atoms of POPE are shown as green spheres and POPG phosphorous atoms as gray spheres. (c) Same as (b) but showing the water molecules above and below the lipid layers. The membrane is tapered near the MU1140–lipid II assembly due to the short length of MU1140. (d) Density profile of the water molecules in the transmembrane region of the lipid bilayer for one, two, and four complexes of MU1140–lipid II.

For both the two and four complexes, significant hydrogen bonding between the water molecules and MU1140 is observed as shown in Fig. 8. For these complexes, we calculated the percentage hydrogen bonding with water per chain and plotted the result as a bar graph in Fig. 8c. Compared to almost non-existent hydrogen bonding with Ala11 and Ala16 with in a single chain of MU1140 in the membrane, both the two and four chain complexes showed markedly higher hydrogen bonding with these residues. Similarly, Arg13 also showed an increased hydrogen bonding in the two and four MU1140–lipid II complexes.

Hydrogen bonding with other residues are found to be similar among systems with one, two, and four complexes. Interestingly, the space between the two and four MU1140 chains allows multiple water molecules to traverse the transmembrane region at the same time, and thus breaks the single-file nature of the water permeation that occurs with only one chain (Fig. 5). We calculated the first passage times for successfully traversing the transmembrane region and plotted their distributions. It is interesting to note that the first passage time distribution for one MU1140–lipid II complex has only one well-defined peak with $t = 23$ ns but
the distribution for two and four complexes seem to show two different timescales for the water traversing the lipid bilayer: (1) one peak around 22 ns, which is similar to the one chain MU1140 system and likely represents the single-file transportation and (2) the other peak at a much faster timescale ~10 ns, likely from the diffusion in the mid-region.

IV. Conclusions

The ability of MU1140 to bind to the lipid II pyrophosphate moiety and abduct it from the septum of division, therefore obstructing bacterial cell wall synthesis makes it a promising antimicrobial candidate for antibiotic-resistant pathogens. The bacterial-killing mechanisms of certain antimicrobial peptides can be complex and involve more than a single mode of action. For example, it can include interference of the lipid II function and membrane pore formation or membrane disruption. Interestingly, it has been suggested that the lantibiotic spectrum of activity and potency is not necessarily related to the numbers of mechanisms involved. Bonelli et al. previously reported that epidermin and gallidermin are 10–20 times more potent against Lactococcus lactis than nisin, despite the missing pore formation capacity on that strain. In addition, it was previously shown that [A12L]gallidermin is as active as wild-type gallidermin against Micrococcus flauus, despite losing its pore-forming activity. Peptides that have similar moieties and structural features as MU1140, including nisin, epidermin, and gallidermin, have been shown to possess these dual functions in several bacterial strains. However, the molecular mechanisms of how MU1140 and its variants interact with lipid II or form the permeable membrane pores have only been inferred from the structural similarities with nisin and gallidermin. In this work, we explored the interactions of MU1140 with lipid II as well as the mechanism and sequence of membrane pore formation by the MU1140–lipid II complexes in the Gram-positive bacterial membrane using MD simulations. As with nisin, the anionic pyrophosphate moiety of lipid II provides the binding target for the thioether rings in MU1140. The formation of a stable MU1140–lipid II complex highlights the lipid II trafficking mechanism of MU1140 suggested by experimental studies. Despite structural differences in the C-terminal tail as well as the peptide length between nisin and MU1140, our results show that MU1140–lipid II complexes are able to form functional, water permeating membrane pores. Even a single chain of MU1140 complexed with lipid II is able to permeate water molecules across the membrane via a single-file water transport mechanism, which is commonly observed in nanoscale confinement such as carbon nanotubes and protein channels. The ordering of the water molecules in the single-file chain region as well as the diffusion behavior is similar to those observed in other biological water channels such as gramicidin A. Multiple complexes of MU1140–lipid II in the membrane showed enhanced permeability for the water molecules, as well as a noticeable membrane distortion and lipid relocation towards the central region of the lipid bilayer. The results suggest that a higher concentration of MU1140 assembly in the membrane can cause significant disruption of the bacterial membrane. These investigations, for the first time, provide an atomistic level insight into a novel mode of action for MU1140. Further biophysical investigations with different variants of MU1140, lipid compositions, and multimeric assemblies can provide important insights for rational design of optimized peptide variants with improved antimicrobial properties.

Conflicts of interest

JHP and MH had a financial interest in Oragenics as stockholders and employees during the data collection, analysis, and writing of the manuscript.

Acknowledgements

Part of this work was supported by Oragenics Inc.

References

