

DEEP FISSION

Investor Presentation

February 10, 2026

**Powering Humanity from a
Mile Underground**

DeepFission.com

Legal Disclaimer— Forward-Looking Statements

This presentation contains forward-looking statements within the meaning of the U.S. federal securities laws, including, among other things, statements regarding Deep Fission, Inc.'s development plans, anticipated project timelines, cost objectives, commercialization strategy, partnerships, and other future matters.

Forward-looking statements are based on current expectations and assumptions and involve risks and uncertainties that could cause actual results to differ materially from those expressed or implied. Important factors that could cause such differences are described under "Risk Factors" and "Special Note Regarding Forward-Looking Statements" in Deep Fission's registration statement on Form S-1 (as amended from time to time) and in other filings Deep Fission makes with the U.S. Securities and Exchange Commission ("SEC").

Deep Fission undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, future events, or otherwise, except as required by law. Nothing in this presentation constitutes an offer to sell, or a solicitation of an offer to buy, any securities of Deep Fission.

Clean energy for the AI era.

Deep Fission leverages the Earth's own physics to redefine the **speed**, **cost** and **commercialization** of nuclear power.

CEO Overview

[EnerCom Denver Conference](#)

Core Idea and Origin Story

[The Economist](#)

Pilot Reactor Development

[Fox Business Network](#)

Groundbreaking for DOE Reactor Pilot Program Site

[CNBC](#) [NPR in Kansas City](#)

3 Initial Planned Sites

[World Nuclear News](#)

12.5 GW in Pipeline

[Bloomberg](#)

\$30M Financing, Go-Public Transaction

[Bloomberg Power Technology](#) [Press Release](#)

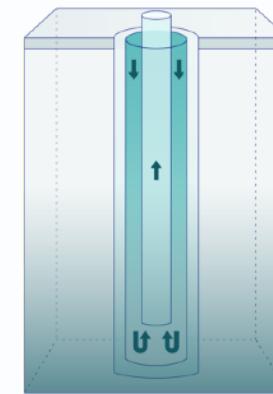
*Media references are for information purposes only and should not be interpreted as endorsements.

February 10, 2026

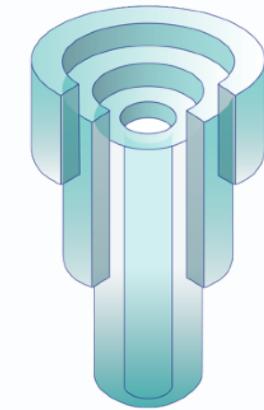

Deep Fission Advanced Nuclear Raises \$80 Million in Financing to Accelerate Commercialization

- Financing was completed through the sale of restricted shares of common stock at a price of \$15.00 per share.
- Deep Fission has formed a new strategic relationship with Blue Owl Capital's Real Assets platform. The companies will collaborate to deploy Deep Fission SMR projects for Blue Owl's digital infrastructure portfolio, and a Blue Owl-managed fund participated in the financing.
- Goldman Sachs & Co. LLC acted as exclusive financial advisor and will continue to provide strategic financial advisory services to support Deep Fission's long-term growth and capital planning.

Integrating three established technologies.


Deep Fission leverages three existing technologies in one solution called the Gravity Nuclear Reactor, significantly reducing the cost and complexity of surface infrastructure.

Pressurized Water Reactor


Hydrostatic pressure from one-mile-deep column of water provides 160 atm of reliable pressure, safely and naturally. PWR uses readily available low-enriched uranium (LEU) fuel.

Geothermal Technology

Novel deployment approach applies proven geothermal components and processes for energy transfer to the turbine generator at the surface.

Deep Borehole Drilling

Optimized borehole design is intended to be drillable using standard oil & gas infrastructure for containment a mile underground, subject to further development.

Regulatory Advantage: Deep Fission selected as one of 10 companies for the U.S. Department of Energy Nuclear Reactor Pilot Program—

A fast-track initiative to
design, build, and operate
advanced test reactors.

“U.S. DEPARTMENT OF ENERGY ANNOUNCES INITIAL SELECTIONS FOR NEW REACTOR PILOT PROGRAM

August 12, 2025

WASHINGTON—The U.S. Department of Energy (DOE) today officially kicked off President Trump’s Nuclear Reactor Pilot Program, announcing DOE will initially work with 11 advanced reactor projects to move their technologies towards deployment.

...
Today’s initial selections represent an important step toward streamlining nuclear reactor testing and unleashes a new pathway toward fast-tracking commercial licensing activities. “President Trump’s Reactor Pilot Program is a call to action,” said Deputy Secretary of Energy James P. Danly.

...

Seeking DOE authorization provided under the Atomic Energy Act will help today’s selected companies— Aalo Atomics Inc., Antares Nuclear Inc., Atomic Alchemy Inc., Deep Fission Inc., Last Energy Inc., Oklo Inc., Natura Resources LLC, Radiant Industries Inc., Terrestrial Energy Inc., and Valar Atomics Inc.— unlock private funding and provide a fast-tracked approach to future commercial licensing activities.

...
DOE looks forward to working with these 11 projects to safely and efficiently accelerate the deployment of advanced nuclear technology.”

Meet the new face of nuclear.

Culture of collective drive, ecosystems over empires, and AI-native agility.

Elizabeth Muller CEO and Co-Founder Co-Founder, Board Chair & Former CEO, Deep Isolation (nuclear waste disposal) Co-Founder, Berkeley Earth	Michael Brasel COO 30 years across nuclear, fossil, renewable energy	Rani Franovich VP Regulatory Strategy 30 years at NRC
Richard Muller PhD CTO and Co-Founder Co-Founder, Deep Isolation MacArthur "Genius" 80+ nuclear patents Professor Emeritus, UC Berkeley	Mark Pérès VP Engineering 40+ years in Nuclear Engineering	David Nelson VP Drilling & Well Completion 30 years in petroleum engineering, complex \$B developments
Mark Schmitz CFO 40+ years global finance leadership, former CFO, Itron, Goodyear, PlugPower	Bryan Black VP Business Development 15 years in nuclear and power sectors	Anya Scuderi Strategic Finance 10 years experience in energy capital markets
Chloe Frader VP of Strategic Affairs 15 years in startups, political and finance sectors	Jason Pottorf Principal I&C Safety Analysis Engineer 25 years in commercial nuclear energy safety	

World-Class Board of Directors

**Elizabeth
Muller**

CEO and Co-
Founder

Board Chair

Leslie Tepper

Managing Partner of
LGT Seven
Enterprises

Nominating &
Governance
Committee Chair

Jonathon Angell

CEO of Angell
Investments

Compensation
Committee Chair

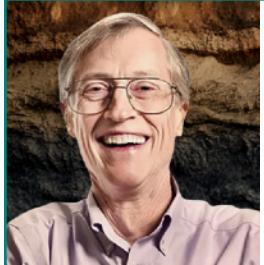
Thomas Glanville

Managing Partner of
Eschelon Advisors, LP

Audit Committee Chair

Blake Janover

Board Member and
CCO of DeFi
Development
Corporation


Expert Advisory Board

Steve Koonin
Special Government Employee, DOE
Former Chief Scientists at BP and Former Undersecretary of Energy

Stacy Polley
Independent Board Member, Blue Owl
Senior Advisor to Blackstone, Inc. and former partner of Goldman Sachs

John Mather
Nobel Laureate in Physics
Senior Astrophysicist at NASA's Goddard Space Flight Center

Jo Riley
Co-Founder and CEO of Censia
Entrepreneur focused on AI models for talent sourcing

Steve Chu
Nobel Laureate
Former Secretary of Energy

Mark Peters
CEO of Mitre Corporation
Former Head of Idaho National Labs

Bret Johnsen
CFO of SpaceX
Former CFO of Mindspeed Technologies

Patrick Huston
Brig. Gen. (Ret.)
FBI Scientific Working Group on AI

Kristin Sverchek
Former President, General Counsel and President of Business Affairs at Lyft

Allison Salisbury
Entrepreneur
Building social impact companies

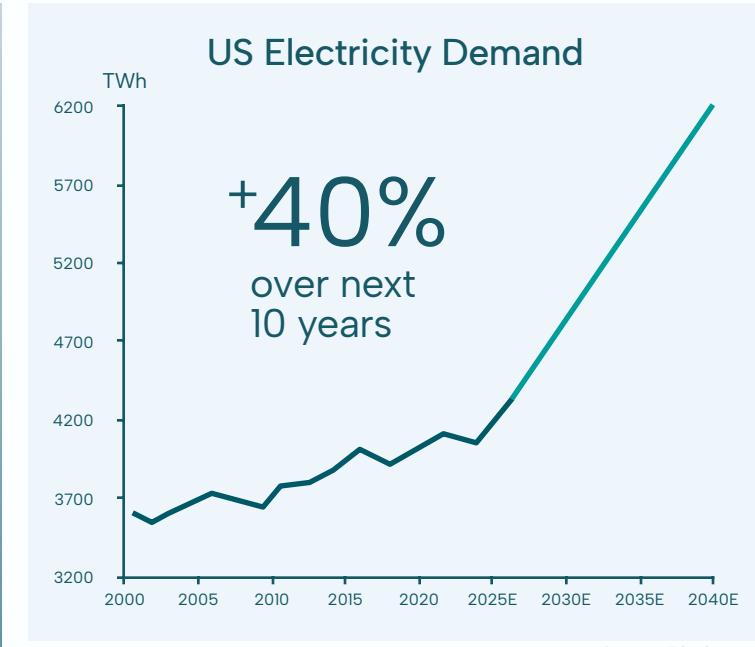
CLEAN AIR
TASK FORCE

Idaho National Laboratory

Demand for energy could quickly create a national security and infrastructure crisis.

Demand is quickly surpassing supply, in part due to the **surge in capital expenditure from AI-driven data centers and hyperscalers**. We are at a point where shortfalls in energy supply are becoming critical. Fast deployments of nuclear power with Deep Fission technology may provide a compelling low-cost solution and rapid build time.

By 2033, the U.S. energy transition market is projected to reach **\$1.18 trillion***, and that number is likely to rise as demand continues to outpace supply. While the U.S. has the largest fleet of nuclear power plants, developing new reactors has proved extraordinarily difficult. **Only three new reactors have come online since 1996.****


*U.S. Energy Transition Market Size, Share & Trends Analysis Report, 2025 – 2033 (Grand View Research).

The energy transition market is the economic sector focused on shifting from fossil fuels to clean energy.

**New York Times, after May 2025 Executive Orders announcement

Source: International Energy Agency

Source: Blackstone

Only
3
new
reactors
since
1996

\$1.18 Trillion
2033 US Energy
Transition Market

Credibility, cost & complexity are barriers— We are in a race against time.

The Department of Energy has declared a nuclear fast-track, and Deep Fission believes it has a plan and path to lead on development progress, deployment timeline, and speed to commercialization.

Other Nuclear Energy Solutions

Traditional/Surface Level Reactors

Credible, safe solutions that take decades to build, maximize “not-in-my-backyard” pushback, and often amplify costs to the point of cancellation.

Next-Gen SMRs

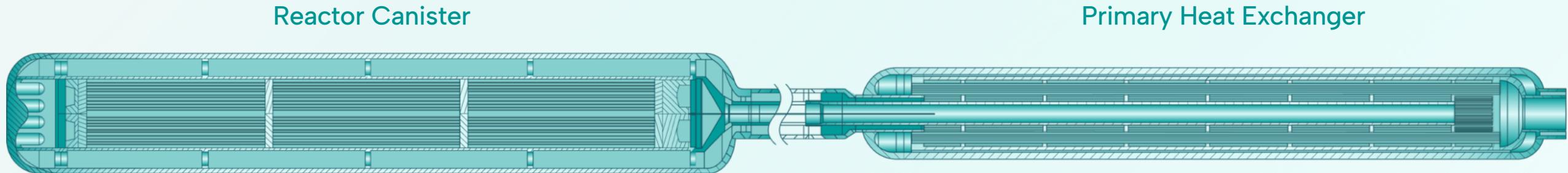
Small modular reactors are hindered by their ability to produce cost-effective electricity in the near term.

Novel Reactor Startups

New solutions pose high risk with unproven upside—iterative, untested technology as concepts advance through early engineering and validation stages.

Deep Fission

Deep Fission is designed for rapid deployment, leveraging established technology, and engineered for economic transformation.



Nuclear Reactor Landscape: At-A-Glance

<u>Feature/Metric</u>	Traditional Nuclear Reactors	Next-Gen Small Modular Reactors (SMR)	GRAVITY NUCLEAR REACTOR
Build Time	6-10 years	3-4 years	Target ~6 months (single reactor)
Construction Costs	\$15B+ for 1GW	\$8-9B for 1GW	Est. \$2.5-3B for 1GW
Fuel Type	LEU (readily available)	HALEU (hard to source)	LEU (readily available)
Regulatory Path	Long, complex	Regulatory uncertainty (still new tech)	Aligns with DOE and NRC reforms
Modularity/Scalability	Large, one-off projects	Modular, but still costly to replicate	100 reactors on one site can produce 1.5GWe (Fraction of the surface footprint used by traditional nuclear reactors)
Levelized Cost of Energy (LCOE)	\$180+/MWh	Est. > \$100+/MWh	Est. \$50-70/MWh*

*excludes owner costs & contingencies

The Gravity Nuclear Reactor may be the biggest scientific breakthrough in nuclear power of the last 50+ years.

Reactor Canister

Primary Heat Exchanger

Deep PWR

Standard Fuel Assemblies
with readily available
LEU fuel

Deep Geo Vault

Optimized Borehole
drilled utilizing oil & gas
technology and expertise

Deep Geothermal

Steam Generator
leveraging conventional
geothermal technology

+ Passive Safety and Containment

+ Natural Emergency Core Cooling

+ No Need for Expensive Mega-Structures

The Gravity Nuclear Reactor breakthrough improves on major variables of PWR and SMR complexity and cost.

New Pressurized Water Reactors
are still not cost-effective

Deep Fission
engineered to achieve compelling
economics across the board

Reactor Pressure Vessel

\$\$\$\$

\$

Emergency Core Cooling Systems

\$\$\$

\$

Reactor Containment Building

\$\$\$\$

\$

Nuclear Construction and Quality Assurance

\$\$\$

\$

Supply Cost for Standard Fuel Assembly

\$\$

\$\$

Advanced/Small Modular Reactors

HALEU Fuel Supply

\$\$/Not yet
commercially
available

N/A

Nuclear Construction and Quality Assurance

\$\$\$

\$

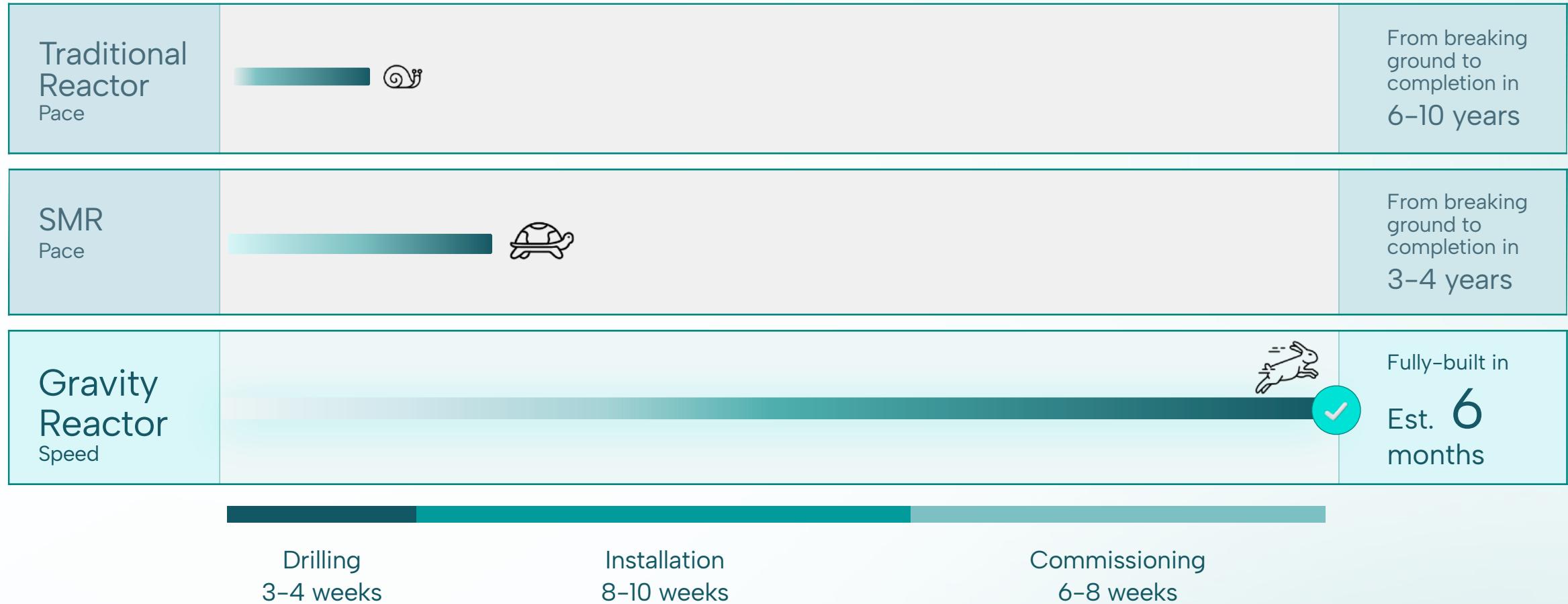
estimated 70-80% cost reduction
vs. most recent completed conventional PWR

Not just viable—ready to be profitable from day one of commercial service.

Target LCOE of \$50–70/MWh enables nuclear project economics to be cost competitive with other traditional and renewable forms of energy.

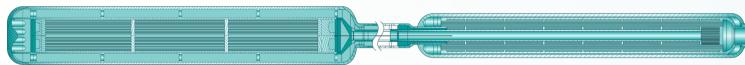
Deep Fission Target Contracted Sales Price (\$/MWh)

\$80-130


Including energy, capacity, and environmental attributes

	Levelized Cost of Electricity (\$/MWh)	Overnight Installed Cost (\$/MW)
Solar PV + Storage (Utility)	\$60 – 210	\$85 – 1.4M
Wind + Storage (Onshore)	\$45 – 133	\$1.3 – 1.9M
Coal	\$69 – 168	\$3.31 – 7.01M
Gas Combined Cycle	\$45 – 108	\$85 – 1.3M
US Nuclear (Vogtle)	\$186	\$15M
Advanced /Small Modular Nuclear	N/A	~\$8 – 9M
Deep Fission	Est. \$50 – 70	Est. \$2.5–3.5M*

Source: US Energy Information Administration (2023); Lazard's LCOE Report (2024); DOE Pathways to Commercial Liftoff: Advanced Nuclear


*excludes Owner costs and contingencies

Deployment Speed: Targeting a 6-month completion cycle (one reactor) from breaking ground to fully-built.

1	Speed up Reactor Licensing Creates expedited pathway to approve reactors tested by DoD and DOE. Establishes NRC deadline to license within 18 months.	Deep Fission's regulatory strategy aligns with DOE's streamlined authorization framework for reactor demonstration and supports commercial licensing by NRC.
---	---	--

Regulatory Speed— Tailwinds from Executive Orders

2	Add 300 GW by 2050 Expands capacity to 400 GW by 2050, including 5 GW of uprates, LPO for reactor restarts, & 10 new large-scale reactor builds.	The Gravity Reactor will allow quick scaling from megawatts to gigawatts equivalent to a large scale reactor build.
---	--	---

4	Deploy for AI & Military Directs DoD to build a reactor at a military installation within 3 years. Allows DOE to utilize authorities to authorize reactors for AI applications.	Gravity Reactor architecture is inherently modular and scalable, enabling compact area deployment preferable for military installations.
---	---	--

6	Bolster U.S. Workforce Increases in apprenticeship and education opportunities. Increases access to R&D infrastructure..	Deep Fission's leadership profile, company reputation and interdisciplinary engineering approach broadly increase talent development and cross-skilling opportunities.
---	--	--

3	Faster Reactor Testing Launches new DOE pilot program to build and test three reactors by July 4, 2026.	On August 12, Deep Fission was selected as one of only 10 companies to participate, alongside notable companies such as Aalo Atomics and Oklo.
---	---	--

5	Ramp Up Fuel Production Builds out U.S. nuclear fuel supply chain. Increases enrichment and deconversion services. Releases 20 metric tons of HALEU.	The novel approach of our reactor at-depth uses conventional LEU (not HALEU) and is more readily available than exotic alternative fuels (e.g., TRISO fuel).
---	--	--

7	Spent Fuel Management Recommends national policy on spent fuel management and high-level waste that considers advanced fuel cycle.	Our deployment model encompasses safe interim storage pending identification of National, long-term storage solutions. Long-term isolation strategy is possible through proactive collaboration with Deep Isolation.
---	--	--

8	Expand U.S. Exports Produces strategy to increase financing for U.S. projects and promote nuclear trade.	Our reactors are ready for seamless global scalability, as a result of the existing commercial availability and extensive operational history of our requisite technologies—drilling, geothermal, and PWR (using LEU fuel).
---	--	---

Commercial Roadmap— Rapid Scale from First Reactor to First Focus: Data Centers

Landmark Partnership With Endeavour

Deep Fission is partnering with Endeavour, a sustainable data center infrastructure company, to co-develop 2 GW of nuclear energy, supporting sales to major cloud providers.

This partnership creates a direct commercial pathway for Deep Fission reactors in one of the fastest-growing electricity demand sectors, leveraging its unique ability to deliver reliable, zero-carbon baseload power at scale.



Full Endeavour Portfolio:

ENDEAVOUR

Accelerated Innovation— Deep Fission is a new class of infrastructure.

Intellectual property (IP) process is expedited and intended to create long-term IP moat and technology licensing potential.

Core Concept Stack

Deep-Borehole Nuclear Reactor

Borehole Nuclear Power Plant System

Deep
Subsurface
Reactor
Emplacement and
Borehole Design

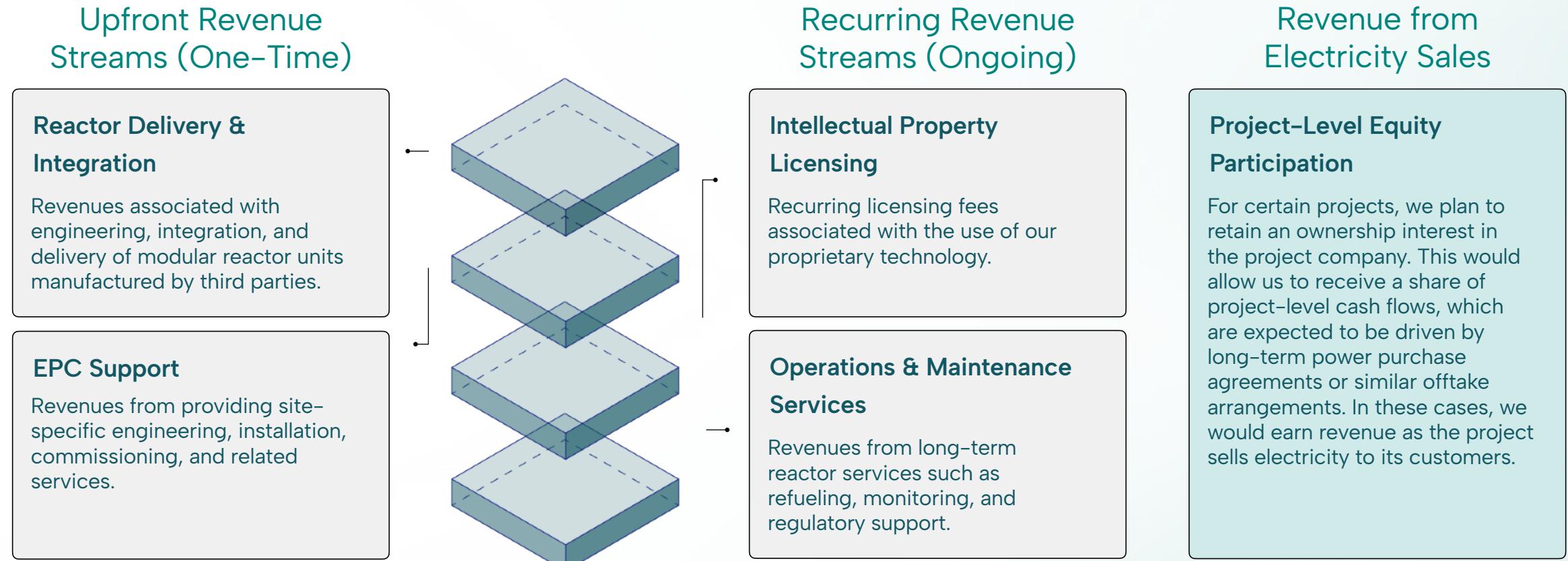
Reactor Module
Configuration,
Thermal-Hydraulic
Systems, and
Passive Safety
Features

Drilling, Casing,
and Emplacement
Techniques for
Nuclear
Applications

Instrumentation,
Control, and
Monitoring
Systems for Deep-
Borehole Reactors

Heat Extraction and
Surface Power-
Conversion Interface
Systems

24


Pending
Applications;
1 US Application
Issued

40+

Unique
Innovations
and Novel
Concepts to date

We aim to provide a new approach to delivering clean, reliable energy.

Our business model supports revenue from development and construction, technology licensing and services, and long-term revenue from electricity sales. We expect to utilize third-party project financing to support reactor deployment.

Summary Investment Thesis –

This may be the most important investment of our lifetime.

Speed

Estimated 6 months (one reactor) from breaking ground to production.

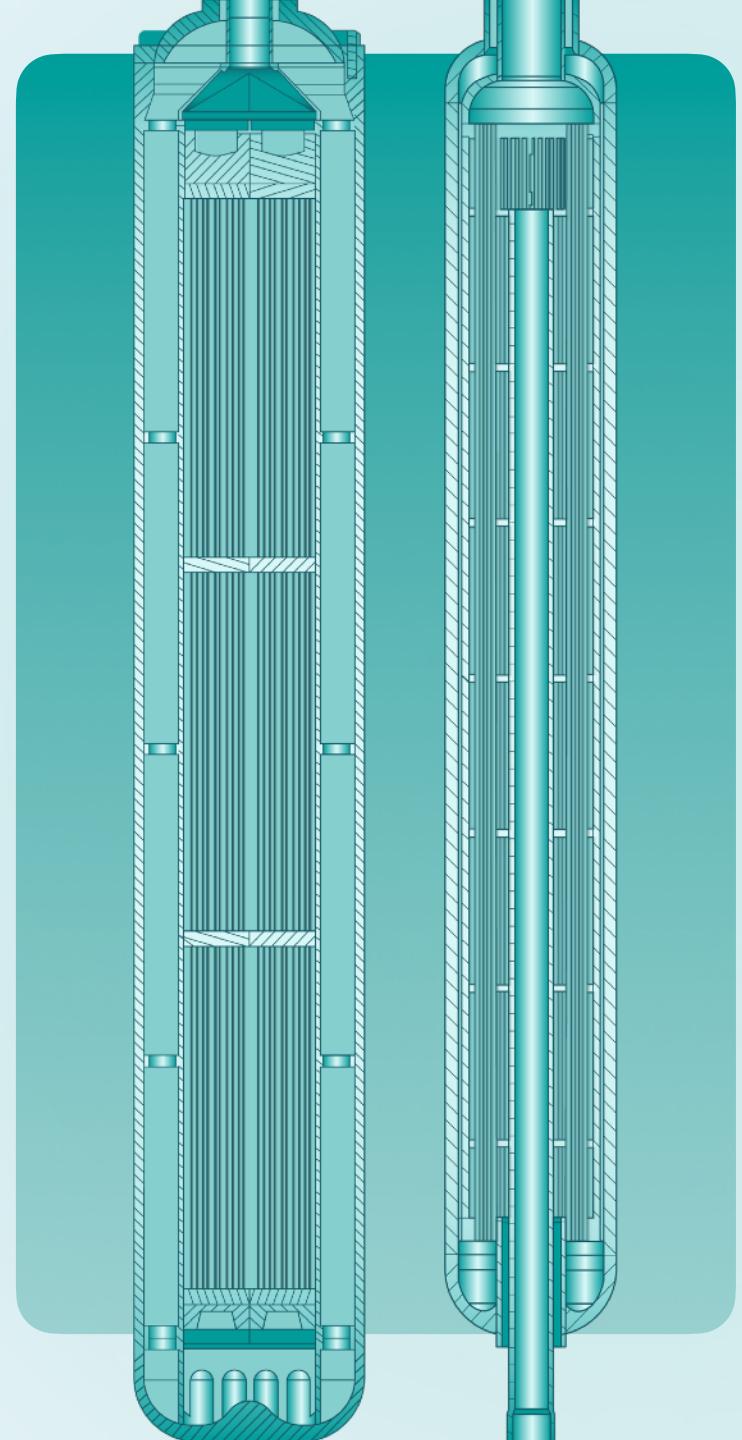
Safety

One mile underground with natural containment and pressure.

Proven

Novel combination of established nuclear, geothermal, and drilling technologies.

Scalable


Broad-range market serviceability from 15MWe to 1.5GWe.

Affordable

Nth-of-a-kind target of \$50-70 per MWh for continuous supply.

Readiness

DOE pilot program selection obtained.
Pilot facility targeted in 2026.
Secured LOIs for 12.5GW in pipeline.

The Fastest Path to Scale Nuclear Power

For investor inquiries, contact:

Bob Prag

IR@deepfission.com

(858) 794-9500

For media inquiries, contact:

Chloe Frader

VP Strategic Affairs

chloe.frader@deepfission.com

Powering Humanity from a
Mile Underground