2019 ASCO Annual Meeting May 31 – June 4, 2019 Chicago, IL

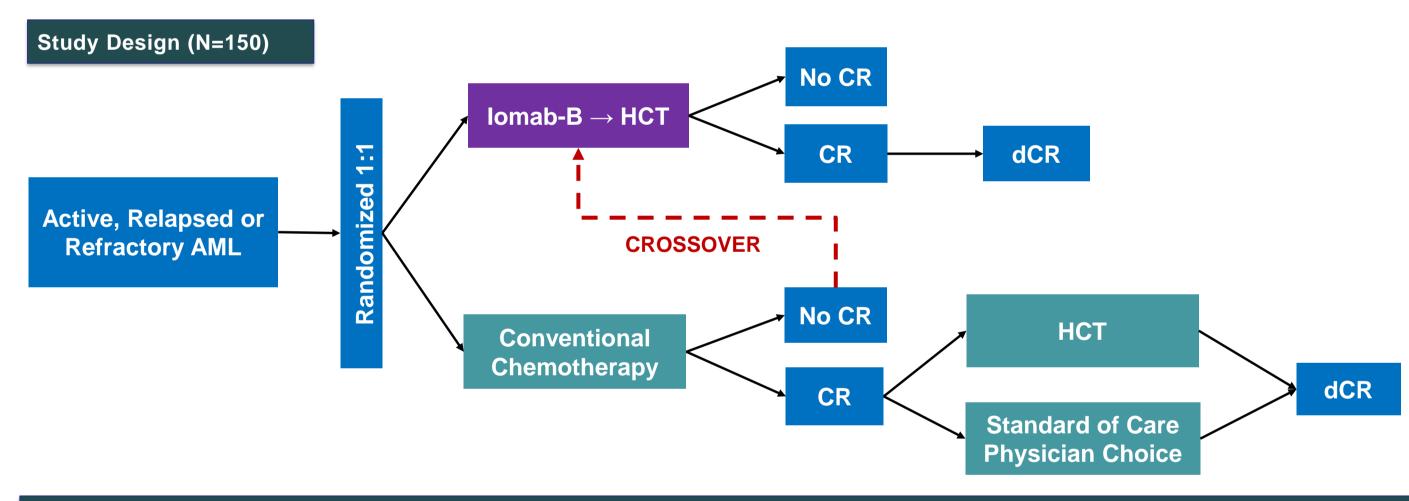
Rapid reduction of peripheral blasts in older patients with refractory acute myeloid leukemia (AML) using reinduction with single agent anti-CD45 targeted iodine (1311) apamistamab [lomab-B] radioimmunotherapy in the phase III SIERRA trial.

∧ ∧ 5 patients ineligible for transplant

Benjamin Tomlinson¹, Vijay Reddy², Mark S. Berger², Jennifer Spross², Renee Lichtenstein², Boglarka Gyurkocza³ ¹ University Hospitals Case Medical Center, Cleveland, OH, ²Actinium Pharmaceuticals, New York, NY, ³ Memorial Sloan Kettering Cancer Center, New York, NY

RELAPSED/REFRACTORY AML

Background & Rationale


The SIERRA trial is a prospective, randomized, phase 3, open-label, ongoing multicenter trial for patients aged ≥55 years with active, relapsed/refractory (R/R) AML evaluating allogeneic hematopoietic cell transplantation (HCT) versus conventional care (CC). Recent preliminary data demonstrated robust donor engraftment in all patients treated with Iomab-B (Agura et al, Blood 2018 132:1017) despite active disease. Rapid peripheral blast clearance is predictive of CR and RFS after cytotoxic chemotherapy for AML (Elliot et al, Blood 2007 110:4172; Gianfaldoni et al, BJH 2006 134:54). In the present study we characterize the anti-leukemic effect and rate of peripheral disease reduction by single-agent lomab-B.

We hypothesize that successful engraftment following HCT may be related to myeloablation and anti-leukemic activity by single agent lomab-B prior to RIC.

Patients are randomized to receive Iomab-B and HCT or to a CC therapy including approved targeted agents followed by HCT if in remission. Majority of patients (79%) in the CC arm did not achieve CR and the study allowed crossover to receive Iomab-B.

Data were evaluated for the first 25% of patients (N = 38). 29 patients received Iomab-B, either directly (N = 19) or via crossover (N = 10). Median baseline marrow blasts were 30% (4-74) for Iomab-B and 24% (6-70%) for CC, which increased to 45% (10-70%) at crossover. Peripheral blast data was available in 16 patients (lomab-B 7, Crossover 9). By day 3 post-lomab-B, blasts were reduced by 98% with 100% reduction by day 8 (assuming 0% blasts due to lack of differential at WBC 0.1). All patients engrafted with ANC at a median of 13 days (9-22 days). Patients treated with hydroxyurea versus without were analyzed together as well as separately and showed similar results. One patient received hydroxyurea post-lomab-B therapeutic infusion.

Figure 1: SIERRA Phase 3 Trial Design

Primary End-point: **Secondary End-point:** Durable Complete Response Rate (dCR): Morphologic CR Lasting ≥180 Days 1-year Overall Survival

Key Eligibility Criteria:

Active, relapsed or refractory AML defined as:

- Primary induction failure (PIF) after ≥2 cycles of chemotherapy
- First early relapse after remission < 6 months Refractory to salvage combination chemotherapy

*1 patient with peripheral blasts at screening

- with high-dose cytarabine • Second or subsequent relapse
- Bone marrow blast count ≥ 5% or the presence of peripheral
- ≥ 55 years of age
- Karnofsky score ≥ 70
- An 8/8 allele-level, related or unrelated, medically cleared HSC donor matching at HLA-A, HLA-B, HLA-C, and DRB-1
- **Table 1: Patient Demographics**

Ongoing Phase 3 SIERRA Trial (N=38) Randomized to Iomab-E Randomized to Conventional Care (N=19) Study Arm (N=19) Randomized to Conventional Care and Crossed Over (N=10) 64 (55-76) 62 (55-72) (median, range) 63 (58-72) Disease Status Primary Induction Failure (10) Primary Induction Failure (6) First Early Relapse (1) First Early Relapse (1) Primary Induction Failure (3) Relapsed / Refractory (4) Randomization Relapsed / Refractory (8) First Early Relapse (0) 2nd / Subsequent Relapse (3) 2nd / Subsequent Relapse (4) Relapsed / Refractory (6) 1 patient not entered 2nd / Subsequent Relapse (1) <u> % Bone Marrow</u> At randomization: 24% (6-70) **30%** (4*-74) **26%** (6-97) **At Crossover:** 45% (10-70) (median, range)

For Questions or Comments Relating to the SIERRA Trial, Please Contact:

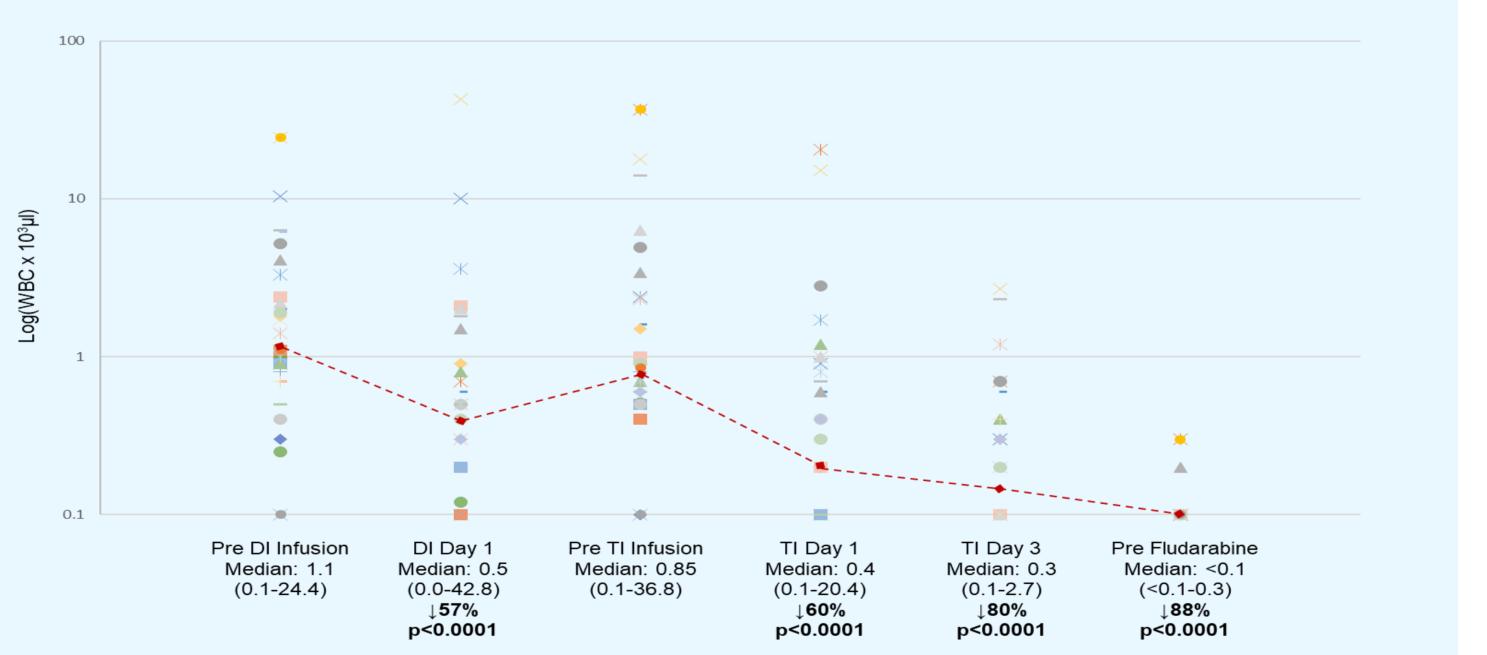

SIERRA.ACTINIUM@actiniumpharma.com

Figure 2: Iomab-B and Peripheral Blood Draw Schedule **Iomab-B Specific Standard Transplant Procedure** Dosimetry **Therapy Dose** (~10-20 mCi) (mean~600mCi*) -12 to HCT

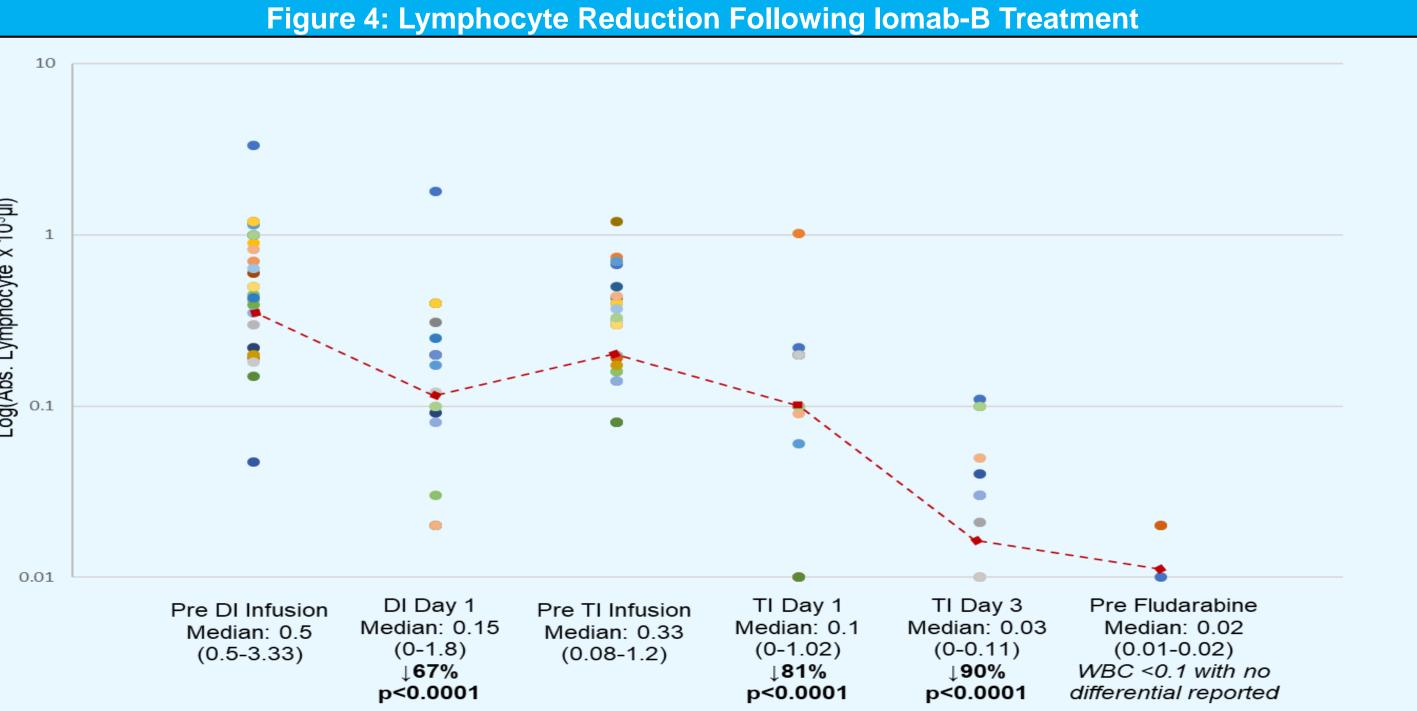
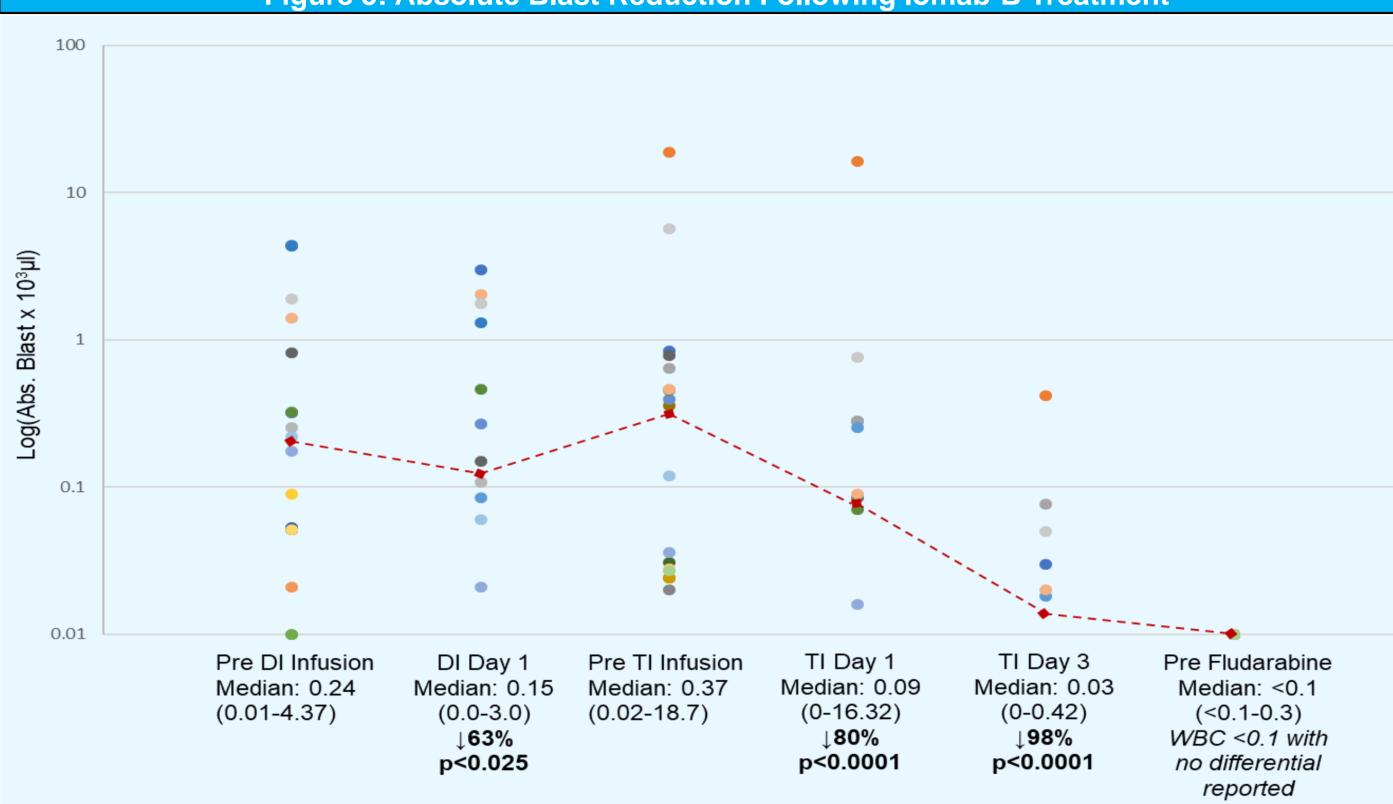

*Therapy dose individualized and calculated based on upper limit of 24 Gy liver exposure Median 17 Gy dose delivered to bone marrow

Table 2: WBC, Absolute Lymphocyte and Absolute Blast Reduction Post Iomab-B						
Time Point Assessments	WBC x 10 ³ μL (N=30)^	% Reduction	Absolute Lymphocyte x 10 ³ µL (N=27)^	% Reduction	Absolute Blast x 10 ³ µL (N=16**)	% Reduction
Pre Dosimetry Infusion (Pre DI)	1.10 (0.1 – 24.4)	-	0.5 (0.05 – 3.33)	-	0.24 (0.01 – 4.37)	-
Day 1 Post Dosimetry (D1)	0.5 (N=29) (0.0 – 42.8)	57% (p < 0.0001)	0.15 (N=20) (0.00 – 1.8)	67% (p < 0.0001)	0.15 (N=13) (0.0 – 3.0)	63% (p < 0.02)
Pre Therapy Infusion (Pre TI)	0.85 (N=28) (0.1 - 36.8)	-	0.33 (N=23) (0.08 – 1.2)	-	0.37 (N=16) (0.02 – 18.7)	-
Day 1 Post Therapy (T1)	0.4 (N=28) (<0.1 – 20.4)	60% (p < 0.0001)	0.1 (N=14) (0.00 – 1.02)	81% (p < 0.0001)	0.09 (N=11) (0 – 16.32)	80% (p < 0.0001)
Day 3 Post Therapy (T3)	0.3 (N=26) (<0.1 – 2.7)	80% (p < 0.0001)	0.03 (N=13) (0.00 – 0.11)	90% (p < 0.0001)	0.03 (N=8) (0 - 0.42)	98% (p < 0.0001)
Day 8 Post Therapy (T8, Pre FLU Conditioning)	0.1 (N=28) (<0.1 – 0.3)	88% (p < 0.0001)	0.02 (N=3) (0.01 – 0.02)	WBC <0.1 with no differential reported*	0.0* (N=16)	WBC <0.1 with no differential reported*



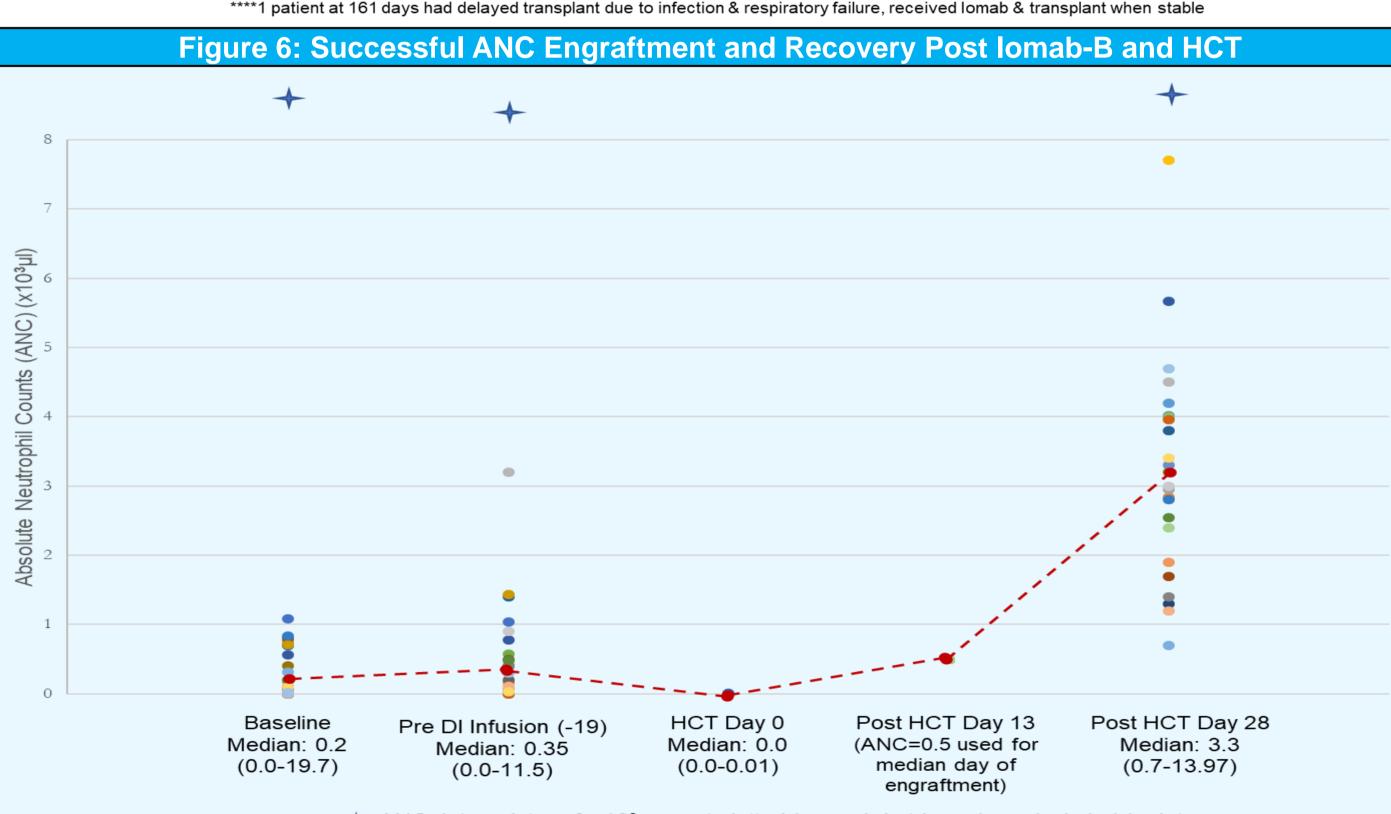
Post-dose percent reduction for DI and TI calculated based on Pre-DI and Pre-TI levels, respectively

Post-dose percent reduction for DI and TI calculated based on Pre DI and Pre TI levels, respectively

Figure 5: Absolute Blast Reduction Following Iomab-B Treatment

Post-dose percent reduction for DI and TI calculated based on Pre-DI and Pre-TI levels, respectively

Table 3: Engraftment Data Randomized to Conventional Care (N=19) Randomized to Did not achieve CR lomab-B and transplanted Median (range) **Achieved CR and received** Crossed over to lomab-B arm $(N=18/19)^{A}$ standard of care transplant and transplanted (N=10/15) ^^ **13** (9-22)*** **13** (9-20) Days to ANC Engraftment Not collected **17** (10-20)** Days to Platelet Engraftment 16 (13-26)*** Not collected Full Donor Chimerism (>95% n/a (1 patient 65% donor) (1 patient 86% donor) prior to day 100) Days to HCT (Post **28** (23-38) **67** (66-86) **66** (57-161)**** Randomization) **16** (6.3-20) Gy 18 (8.2-32) Gy Dose Delivered to 616 (397-1027) mCi **Bone Marrow** 518 (313-1008) mCi


> 1 patient had unfavorable dosimetry Key Data Highlights:

Despite high blast count all patients receiving lomab-B successfully engrafted 15/19 (79%) of patients in the control arm failed to achieve complete remission

10/15 (67%) of eligible patients in the control arm crossed-over to receive lomab-B Faster time to transplant in patients randomized to lomab-B (28 days) vs. conventional care (67 days)

If on conventional care arm, no delay to HCT with crossover to lomab-B

** N=2 patients, platelet engraftment data not available; *** ANC engraftment data not available (N=2), platelet engraftment data not available (N=3); ****1 patient at 161 days had delayed transplant due to infection & respiratory failure, received lomab & transplant when stable

→ ANC data points > 8 x103 are not plotted in graph but have been included in data **Conclusions**

Targeted radioimmunotherapy with single-agent lomab-B rapidly decreases peripheral

- blasts by 98% by day 3 in chemotherapy refractory AML. Iomab-B conditioning leads to myeloablation in older patients with active disease (up to a median of 45% blasts in the marrow) as demonstrated by engraftment in all patients.
- Successful engraftment after Iomab-B and HCT benefits patients who had prolonged neutropenia due to active and refractory disease prior to transplant.
- While efficacy data is not yet available for these patients, rapid peripheral blast reduction is encouraging as prior studies utilizing cytotoxic chemotherapy suggest a relationship between the rate of disease reduction and disease response.