LEADERSHIP HIGH-PERFORMANCE COMPUTING
CAUTIONARY STATEMENT

This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) such as AMD’s market opportunity and total addressable markets; AMD’s technology and architecture roadmaps; the features, functionality, performance, availability, timing and expected benefits of AMD products; AMD’s path forward in data center, PCs and gaming; and AMD’s market and financial momentum, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as “would,” “may,” “expects,” “believes,” “plans,” “intends,” “projects” and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD’s Securities and Exchange Commission filings, including but not limited to AMD’s most recent reports on Forms 10-K and 10-Q. AMD does not assume, and hereby disclaims, any obligation to update forward-looking statements made in this presentation, except as may be required by law.

NON-GAAP FINANCIAL MEASURES In this presentation, in addition to GAAP financial results, AMD has provided non-GAAP financial measures including non-GAAP gross margin, and non-GAAP earnings per share. AMD uses a normalized tax rate in its computation of the non-GAAP income tax provision to provide better consistency across the reporting periods. For fiscal 2020 and 2019, AMD uses a non-GAAP tax rate of 3%, which excluded the direct tax impacts of pre-tax non-GAAP adjustments. AMD is providing these financial measures because it believes this non-GAAP presentation makes it easier for investors to compare its operating results for current and historical periods and also because AMD believes it assists investors in comparing AMD's performance across reporting periods on a consistent basis by excluding items that it does not believe are indicative of its core operating performance. The non-GAAP financial measures disclosed in this presentation should be viewed in addition to and not as a substitute for or superior to AMD's reported results prepared in accordance with GAAP and should be read only in conjunction with AMD's Consolidated Financial Statements prepared in accordance with GAAP. These non-GAAP financial measures referenced are reconciled to their most directly comparable GAAP financial measures in the Appendices at the end of this presentation.
OUR VISION

High-performance computing is transforming our lives

OUR MISSION

Build great products that accelerate next generation computing experiences
HIGH PERFORMANCE COMPUTING

Cloud, Network, Hyperscale & Supercomputing
5G & Comms Infrastructure
AI & Analytics Everywhere
Adaptable Intelligent Systems
Gaming, Simulation and Visualization
Smarter Client Devices & Edge

AT THE CENTER OF TODAY’S WORLD
AMD IS A LEADING TECHNOLOGY COMPANY

15,000+ Employees
Working around the world, headquartered in Santa Clara, California

Building the Best
Developing high-performance compute technologies that move us forward

Transforming the World
Non-stop innovation for the world’s creators, researchers, inventors and explorers

NASDAQ: AMD
OUR CULTURE OF INNOVATION

Innovate
We build products that transform the world
From research, education and healthcare to business and entertainment

Lead
Everyone has a voice
Our leaders drive growth and innovation through a diverse mix of perspectives and backgrounds

Execute
We are laser focused on innovation and execution
We challenge the status quo and we deliver on our commitments
COMMUNICATION TO ESG
PURPOSE-DRIVEN HIGH-PERFORMANCE COMPUTING

ENVIRONMENTAL
Steadfast commitment to environmental stewardship and contributing to our local communities

SOCIAL
Creating a culture that drives innovation by fostering diversity, inclusion and belonging

GOVERNANCE
Delivering industry leading products with integrity, innovation and quality in order to help solve global challenges

2021 CORPORATE RESPONSIBILITY REPORT NOW AVAILABLE
OUR MARKET OPPORTUNITY

Data Center $35B TAM

PCs $32B TAM

Gaming $12B TAM

$79B TAM
AMD TECHNOLOGIES & ARCHITECTURE ROADMAPS
HIGH-PERFORMANCE SOLUTIONS

HIGH-PERFORMANCE COMPUTE

AMD RYZEN
AMD EPYC

AND

HIGH-PERFORMANCE GRAPHICS

AMD RADEON
AMD INSTINCT
COMPUTE ARCHITECTURE ROADMAP

SUSTAINED HIGH-PERFORMANCE LEADERSHIP

14nm / 12nm

7nm

7nm

5nm

“ZEN”

“ZEN 2”

“ZEN 3”

“ZEN 4”

2017 - 2022
“ZEN 3” CORE ARCHITECTURE
LEADERSHIP PERFORMANCE FOR SERVERS, LAPTOPS AND DESKTOPS

19% IPC Increase The largest generational increase since AMD introduced “Zen” in 2017
New advanced security features
Leadership performance for Cloud, HPC and Enterprise workloads
Outstanding gaming performance for desktops
“ZEN 2” CORE ARCHITECTURE
FASTER, COOLER,
WITH LOWER POWER CONSUMPTION
FOR SERVERS, LAPTOPS AND DESKTOPS

- World’s first high-performance x86 7nm CPU
- Revolutionary Chiplet Design delivers more cores at the same power
- Average 15% IPC Uplift, higher in some server workloads
- Breakthrough 2nd Gen Infinity Architecture interconnect

See endnote RZ3-34
GAMING GPU ARCHITECTURE ROADMAP

DRIVING GAMING PERFORMANCE LEADERSHIP

7nm

RDNA
Architecture Optimized for Gaming

7nm

RDNA 2
Perf/Watt Improvement
Ray Tracing, Variable Rate Shading & More

Advanced Node

2019

2022
AMD RDNA™ 2 GRAPHICS ARCHITECTURE

DRIVING GAMING PERFORMANCE LEADERSHIP

AVAILABLE IN AMD RADEON™ RX 6000 SERIES GRAPHICS

Performance

Up to 2X higher performance compared to AMD RDNA™ on select cards

Power

Up to 65% performance-per-watt improvement vs. AMD RDNA™

Features

Deliver DX12 Ultimate experience for every gamer with raytracing, variable rate shading and more
COMPUTE GPU ARCHITECTURE ROADMAP

COMPUTE DNA FOR THE DATA CENTER

- **2019**
 - 7nm GPU
 - GCN
 - First 7nm Data Center GPU
 - 7nm CDNA
 - 2nd Gen AMD Infinity Architecture Optimized for ML/HPC

- **2022**
 - 6nm CDNA 2
 - 3rd Gen AMD Infinity Architecture Extends to Exascale

Roadmaps subject to change
AMD CDNA™ 2 ARCHITECTURE

GPU COMPUTE DNA FOR THE DATA CENTER

- Built to drive discoveries and accelerate compute-intensive HPC and AI workloads
- Powering solutions from compact single systems to exascale supercomputers
- In-package AMD Infinity Fabric™ technology
- Enhanced Matrix Core technology boosts computational capabilities and throughput
AMD CDNA™ ARCHITECTURE
GPU COMPUTE DNA FOR THE DATA CENTER

- **Performance**
 - Accelerating ML/HPC workloads

- **Efficiency**
 - Designed for improved Perf-per-Watt

- **Features**
 - Enhanced Enterprise RAS, Security and Virtualization

- **Scalability**
 - Scale Performance with AMD Infinity Architecture
AMD INFINITY ARCHITECTURE ROADMAP

CPU CONNECTIVITY
- 1st Gen AMD Infinity Fabric™

4/8-WAY GPU CONNECTIVITY
- 2nd Gen AMD Infinity Architecture

UP TO 8-WAY GPU WITH COHERENT CONNECTIVITY
- 3rd Gen AMD Infinity Architecture

Roadmaps subject to change
AMD INFINITY ARCHITECTURE
SCALABLE INTERCONNECT TECHNOLOGY
FOR AMD CPUs AND GPUs

- Leveraged across AMD product line from notebook to server
- Optimization for multi-processor performance and scalability
- Enables revolutionary chiplet design
- 3rd Gen AMD Infinity Architecture enables unified compute at exascale
AMD LEADERSHIP PACKAGING

2.5D HBM | MULTICHP MODULE | CHIPLETS | 3D CHIPLETS (Chiplet + Advanced 3D Stacking)

2015 | 2017 | 2019 | 2021

Led Industry in HBM, 2.5D & Chiplet Architecture | Aggressive Roadmap for Chiplet & 3D Integration
AMD 3D CHIPLET TECHNOLOGY

BREAKTHROUGH PACKAGING INNOVATION
FOR HIGH-PERFORMANCE COMPUTING

>200X
Interconnect Density
Compared to On-Package 2D Chiplet

>15X
Interconnect Density
Compared to Micro Bump 3D

>3X
Interconnect Energy Efficiency
Compared to Micro Bump 3D

Enabling 3rd Gen AMD EPYC™
Processors with 3D V-Cache
AMD DATA CENTER FOCUS
DELIVERING CPU AND GPU DIFFERENTIATION

HPC
Enterprise/IT
Cloud
Machine Intelligence
Virtualization & Cloud Gaming
AMD DATA CENTER CPU ROADMAP
SUSTAINED HIGH-PERFORMANCE LEADERSHIP

“Naples” 14nm
“Rome” 7nm
“Milan” 7nm
“Genoa” 5nm
“Bergamo” 5nm

2017
“ZEN”
1st GEN
AMDA EPYC

“ZEN 2”
2nd GEN
AMDA EPYC

“ZEN 3”
3rd GEN
AMDA EPYC

“ZEN 4”
4th GEN
AMDA EPYC

“ZEN 4c”

2022

Roadmaps subject to change
AMD EPYC™ LINEUP
A NEW ERA IN THE DATA CENTER

1st Gen AMD EPYC™ Processors
“Zen” Architecture

2nd Gen AMD EPYC™ Processors
“Zen 2” Architecture

3rd Gen AMD EPYC™ Processors
“Zen 3” Architecture
3rd GEN AMD EPYC™ PROCESSOR
EXTENDING PER SOCKET AND PER CORE PERFORMANCE LEADERSHIP

- World’s highest performance server processor*
- Higher performance in HPC, Cloud and Enterprise workloads compared to the competition
- Advanced security features with AMD Infinity Guard
- Built on the powerful and efficient “Zen 3” core

*AMD EPYC 7763. See endnotes MLN-016, MLN-074K, GD-183
LAUNCHING Q1 2022

3RD GEN AMD EPYC™ PROCESSOR WITH AMD 3D V-CACHE

First server CPU using high-performance 3D die stacking

3X L3 Cache* and up to 64 “Zen 3” Cores

Same features and capabilities as 3rd Gen AMD EPYC™ processors

Solutions expected from partners including Cisco, Dell Technologies, Lenovo, HPE and Supermicro

*3rd Gen AMD EPYC™ Processors with 3D V-Cache have 768MB of L3 Cache, while 3rd Gen EPYC processors without 3D V-Cache have 256MB
2ND GEN AMD EPYC™ PROCESSOR
HIGH-PERFORMANCE COMPUTING FOR THE MODERN DATA CENTER

- Breakthrough chiplet architecture based on the “Zen 2” core
- Disruptive TCO driven by leadership performance
- Advanced security features with AMD Infinity Guard
- Up to 128 PCIe® 4.0 Lanes
DATA CENTER CPU GROWTH
DELIVERING LEADERSHIP COMPUTE DIFFERENTIATION

Supercomputing
Leading the Exascale Era – Consistently Winning Top Deployments

Cloud
Expanding Deployments with Leading Providers

Enterprise
Large-scale Enterprise Deployments with Growing Pipeline
AMD DATA CENTER GPU ROADMAP

- GCN: First 7nm Data Center GPU
- 2nd Gen AMD Infinity Architecture
 Optimize for ML/HPC
- CDNA 2: 3rd Gen AMD Infinity Architecture
 Extends to Exascale

Roadmaps subject to change
AMD DATA CENTER GPU LINEUP

A NEW ERA IN THE DATA CENTER

- **AMD Instinct™ MI200 Accelerator**
 - AMD CDNA™ 2 architecture

- **AMD Instinct™ MI100 Accelerator**
 - AMD CDNA™ Architecture

- **Customer-Oriented Data Center Solutions**
 - Strategic development with lead customers

- **ROCc™ Software**
 - Top-to-bottom open ecosystem commitment

WORLD-CLASS GPU ACCELERATOR TECHNOLOGIES
OPEN SOFTWARE ECOSYSTEM PLATFORM
AMD INSTINCT™
MI200
ACCELERATOR
WORLD’S FIRST
EXASCALE-CLASS GPU

Leadership HPC
Up to 3.9X faster than the competition

Leadership AI
Up to 20% faster than the competition

Leadership Science
Fueling exascale discoveries with ROCm™
Open Ecosystem

Leadership Technology
AMD CDNA™ 2
architecture and 3rd Gen
AMD Infinity™ Fabric
AMD INSTINCT™
MI100
ACCELERATOR
OUTSTANDING PERFORMANCE
FOR HPC

Revolutionizing HPC and AI with powerful compute performance

AMD CDNA architecture and 2nd Gen AMD Infinity Fabric™ technology

Supported by accelerated compute platforms from Dell, GIGABYTE, HPE and Supermicro
OUR PATH FORWARD

THE NEW DATA CENTER LEADER

Leadership Roadmap, Consistent Execution

Leadership Performance

Leadership Architecture for Accelerated Computing
AMD CLIENT FOCUS
BUILDING THE BEST PROCESSORS IN THE WORLD

Desktops
- Gaming
- Commercial
- Consumer
- High-end

Notebooks
- Gaming
- Commercial
- Consumer
- Chromebook

Workstations
- Commercial
- Consumer
AMD CLIENT CPU ROADMAP
SUSTAINED HIGH-PERFORMANCE LEADERSHIP

“ZEN”
AMDA RYZEN

“ZEN 2”
AMDA RYZEN
5000 SERIES
3000 SERIES
4000 SERIES

“ZEN 3”
AMDA RYZEN
5000 SERIES

2017
2021
AMD CLIENT LINEUP

PERFORMANCE FOR CONSUMER AND COMMERCIAL PCs

<table>
<thead>
<tr>
<th>Product</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD Ryzen™ 5000 Series Desktop Processors</td>
<td>“Zen 3” Architecture + Built-In Radeon™ Graphics</td>
</tr>
<tr>
<td>AMD Ryzen™ 5000 Series Mobile Processors</td>
<td>“Zen 3” Architecture</td>
</tr>
<tr>
<td>AMD Ryzen Threadripper™ and Threadripper™ PRO Desktop Processors</td>
<td>“Zen 2” Architecture + Built-In Radeon™ Graphics</td>
</tr>
<tr>
<td>AMD Ryzen 3000 Series Desktop Processors</td>
<td>“Zen 2” Architecture</td>
</tr>
<tr>
<td>AMD Ryzen and Athlon™ Processors for Chromebooks</td>
<td>“Zen” Architecture + Built-In Radeon™ Graphics</td>
</tr>
<tr>
<td>AMD Ryzen™ Desktop Processors with Radeon™ Graphics</td>
<td>“Zen 3” Architecture</td>
</tr>
</tbody>
</table>
AMD RYZEN™ 5000 SERIES MOBILE PROCESSORS

THE WORLD’S BEST LAPTOP PROCESSORS

- Unprecedented performance and battery life with “Zen 3” core architecture
- Ryzen 5000 U-Series processors optimized for thin and light notebooks
- Ryzen 5000 H-Series processors optimized for gamers and creators
- 150+ commercial and consumer notebooks expected in 2021

See endnotes CZM-1, CZM-34
AMD RYZEN™ PRO
5000 SERIES MOBILE
PROCESSORS

LEADERSHIP PERFORMANCE AND
ENTERPRISE-CLASS SECURITY FEATURES
FOR THE MODERN WORKFORCE

- World’s best mobile processors for business
- Multi-layered security features help provide protection from silicon to OS
- Strong momentum in commercial notebooks
- Available from top PC vendors including Dell, HP and Lenovo
AMD RYZEN™ 5000 SERIES DESKTOP PROCESSORS

THE WORLD’S HIGHEST RATED GAMING PROCESSORS

- Powerful performance for gamers and content creators
- 7nm “Zen 3” core architecture delivers 19% IPC uplift
- Up to 26% gaming performance generational uplift
- Outstanding power efficiency

See endnotes R5K-002, R5K-007, R5K-009, R5K-003, CZM-119
OUR PATH FORWARD

DRIVING NON-STOP INNOVATION FOR PCs

- Multi-Generational Product Leadership
- Superior User Experience
- High-Performing Notebook Processors
- OEM and Commercial Momentum
AMD GRAPHICS FOCUS

EXPANDING THE RADEON™ UNIVERSE

PCs
Radeon™ RX 6000 series, RX 5000 series, and Radeon™ Pro W5000 series

Workstations
Broad line-up powered by Radeon™ Pro W6000 series, W6600M series and W6000X series

Consoles
Latest consoles powered by "Zen 2"

Cloud Gaming
Google Stadia, Microsoft Project xCloud

Mobile
Samsung partnership and IP licensing

Automotive
Automotive infotainment systems powered by AMD Ryzen™ Embedded and AMD RDNA™ 2
AMD GAMING GPU ROADMAP

2019

- 7nm
 - RDNA
 - "NAVI 1X"

2022

- 7nm
 - RDNA 2
 - "NAVI 2X"
- Advanced Node
 - RDNA 3
 - "NAVI 3X"

Roadmaps subject to change
AMD RADEON™ LINEUP

EXPANDING THE RADEON UNIVERSE

<table>
<thead>
<tr>
<th>AMD Radeon™ RX 6000 Series</th>
<th>AMD Radeon™ RX 6000M Series Mobile Graphics</th>
<th>AMD Radeon™ RX 5000 Series</th>
<th>AMD Radeon™ RX Vega Series</th>
<th>AMD Radeon™ RX 5000 Series</th>
<th>AMD Radeon™ PRO Workstation Graphics</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD RDNA™ 2 Architecture</td>
<td>AMD RDNA™ 2 Architecture</td>
<td>AMD RDNA™ Architecture</td>
<td>"Vega" GCN Architecture</td>
<td>"Polaris" GCN Architecture</td>
<td>AMD RDNA™ 2 Architecture</td>
</tr>
</tbody>
</table>

AMD RADEON

AMD RADEON PRO
AMD RADEON™ RX 6000 SERIES GRAPHICS
HIGH-PERFORMANCE GAMING

- AMD RDNA™ 2 architecture enables performance, features and efficiency
- Up to 2X higher performance compared to AMD RDNA™ architecture-based graphics in select titles
- Up to 65% higher performance-per-watt over AMD RDNA™ architecture-based graphics
- Enables DirectX 12 Ultimate support, raytracing and variable rate shading
AMD RADEON™ RX 6000M SERIES MOBILE GRAPHICS
HIGH-PERFORMANCE GAMING FOR LAPTOPS

- AMD RDNA™ 2 architecture enables performance, features and efficiency
- Desktop-class performance for ultra-high framerate 1440p gaming anywhere
- Up to 1.5X higher performance compared to AMD RDNA™ GPUs
- Brings AMD Infinity Cache and DirectX Raytracing to next-gen laptops
AMD RADEON™ PRO W6000 SERIES GRAPHICS

EXCEPTIONAL PERFORMANCE WITH RELIABILITY, STABILITY AND SOFTWARE CERTIFICATIONS AT ITS CORE

- AMD RDNA™ 2 offering enhanced performance, efficiency and hardware raytracing
- Up to 179% the performance of previous-generation in professional workloads
- Up to a gigantic 32GB of high-performing GDDR6 ECC memory for larger datasets
- Certified for many leading professional software applications for greater stability
OUR PATH FORWARD

PUSHING THE ENVELOPE FOR GAMERS

AMD RDNA™
Scales from PC to Console to Cloud

Top-to-Bottom Leadership Product Stack

Advanced Software
AMD MARKET & FINANCIAL MOMENTUM
FINANCIAL MOMENTUM AND GROWTH

FINANCIALS

REVENUE ($ Billions)

- 2018: $6.5B
- 2019: $6.7B
- 2020: $9.8B

Accelerating Revenue Growth

GROSS MARGIN (%)

- 2018: 38%
- 2019: 43%
- 2020: 45%

Expanding Gross Margin

EPS

- 2018: 0.32
- 2019: 0.30
- 2020: 2.06

Growing Profitability

See Appendices for GAAP to Non-GAAP reconciliation.

EARNINGS POWER OF AMD FINANCIAL MODEL
BUILDING THE BEST

- Best product portfolio in AMD history
- Multi-year leadership technology roadmaps
- Expanding customer and partner ecosystem
- Accelerating market share growth
- Best-in-class growth technology franchise

HIGH-PERFORMANCE COMPUTING LEadership
LEARN MORE

AMD.com
AMD Investor Relations Website
AMD 2020 Financial Analyst Day
AMD Executive Team
AMD Board of Directors
Annual Report
Case Studies
Corporate Responsibility at AMD
Learn More About AMD Ryzen Processors
Learn More About AMD Radeon Graphics Cards
Learn More About AMD EPYC Server Processors
AMD Innovations
Careers at AMD
ENDNOTES

Footnotes GD-122, GD-142, RZ3-34, R5K-003, MLN-071K, MLN-049A, MLN-074K, MLN-016

GD-122: The information contained herein is for informational purposes only and is subject to change without notice. Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change. “Zen,” “Zen 2,” “Zen 3,” “Zen 4,” “RDNA,” “RDNA 2,” “Vega,” “Polaris,” “GCN,” “Naples,” “Rome,” “Milan” and “Genoa” are codenames for AMD architectures and are not product names.

GD-142: AMD APUs and GPUs based on the Graphics Core Next and RDNA architectures contain GPU Cores comprised of compute units, which are defined as 64 shaders (or stream processors) working together.

RZ3-34: ~15% IPC uplift: AMD “Zen 2” CPU-based system scored an estimated 15% higher than previous generation AMD “Zen” based system using estimated SPECint®_base2006 results. SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org.

RX-325: Testing done by AMD performance labs 6/1/19, using the Division 2 @ 25x14 Ultra settings. Performance may vary based on use of latest drivers.

R5K-003: Testing by AMD performance labs as of 09/01/2020. IPC evaluated with a selection of 25 workloads running at a locked 4GHz frequency on 8-core “Zen 2” Ryzen 7 3800XT and "Zen 3" Ryzen 7 5800X desktop processors configured with Windows® 10, NVIDIA GeForce RTX 2080 Ti (451.77), Samsung 860 Pro SSD, and 2x8GB DDR4-3600. Results may vary.

MLN-071K: Based on SPECrate®2017_int_base on 02/20/2021, a server powered by two 64c AMD EPYC 7763 CPUs has a score of 839 which is higher than any currently posted SPEC 2P server score. Per socket score would be 839/2=419.5 which is higher than any 1P server score. This is a compliant result run on an ASUS RS720A-E11(KMPP-D32); with Memory: 1 TB (16 x 64 GB 2Rx4 PC4-3200AA-R); OS: SUSE Linux Enterprise Server 15 SP2 (x86_64) Kernel 5.3.18-22-default; Compiler: C/C++/Fortran: Version 3.0.0 of AOCC. SPEC®, SPECrate® and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

MLN-049A: ANSYS® LS-DYNA® version 2021.1 comparison based on AMD internal testing as of 02/05/2021 measuring the time to run 3cars, test case simulation (converted to jobs/day - higher is better) Configurations using a server with 2x AMD EPYC 7S5F3 versus a server with 2x Intel Xeon Gold 6258R utilizing 384 GB (12x 32 GB DDR4-3200). The 3cars test case gain individually was 128% [~2.26x the] per node or ~98% per core jobs/day performance. Results may vary.

MLN-074K: Based on SPECrate®2017_fp_base on 02/20/2021, a server powered by two 64c AMD EPYC 7763 CPUs has a score of 636 a compliant result run on an ThinkSystem SR665; with Memory: 512 GB (16 x 32 GB 2Rx4 PC4-3200AA-R); OS: Red Hat Enterprise Linux release 8.3 (Ootpa); Compiler: C/C++/Fortran: Version 3.0.0 of AOCC. Versus the current highest score Intel Cascade Lake Refresh server with a score of 309 with a 2P Intel Gold 6258R based server, https://spec.org/cpu2017/results/res2020q3/cpu2017-20200915-23979.pdf. SPEC®, SPECrate® and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.

MLN-016: Results as of 01/28/2021 using SPECrate®2017_int_base. The AMD EPYC 7763 a measured estimated score of 798 is higher than the current highest 2P server with an AMD EPYC 7H12 and a score of 717, https://spec.org/cpu2017/results/res2020q2/cpu2017-20200525-22554.pdf. OEM published score(s) for 3rd Gen EPYC may vary. SPEC®, SPECrate® and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information.
MLN-003: Based on AMD internal testing as of 02/1/2021, average performance improvement at ISO-frequency on an AMD EPYC™ 7F32 (8C/8T, 3.7GHz) compared to an AMD EPYC™ 7F32 (8C/8T, 3.7GHz), per-core, single thread, using a select set of workloads including SPECrate®2017_int_base, SPECrate®2017_fp_base, and representative server workloads. SPEC® and SPECrate® are registered trademarks of Standard Performance Evaluation Corporation. Learn more at spec.org.

GD-183: AMD Infinity Guard features vary by EPYC™ Processor generations. Infinity Guard security features must be enabled by server OEMs and/or Cloud Service Providers to operate. Check with your OEM or provider to confirm support of these features. Learn more about Infinity Guard at https://www.amd.com/en/technologies/infinity-guard. GD-183

RX-325: Testing done by AMD performance labs 6/1/19, using the Division 2 @ 25x14 Ultra settings. Performance may vary based on use of latest drivers.

RX-558: Testing done by AMD performance labs October 20 2020 on RX 6900 XT and RX 5700 XT (20.45-201013n driver), AMD Ryzen 9 5900X (3.70GHz) CPU, 16GB DDR4-3200MHz, Engineering AM4 motherboard, Win10 Pro 64. The following games were tested at 4k at max settings: Battlefield V DX11, Doom Eternal Vulkan, Forza DX12, Resident Evil 3 DX11, Shadow of the Tomb Raider DX12. Performance may vary. RX-558

RX-549: Testing done by AMD performance labs 10/16/20, using Assassins Creed Odyssey (DX11, Ultra), Battlefield V (DX12, Ultra), Borderlands 3 (DX12, Ultra), Control (DX12, High), Death Stranding (DX12 Ultra), Division 2 (DX12, Ultra), F1 2020 (DX12, Ultra), Far Cry 5 (DX11, Ultra), Gears of War 5 (DX12, Ultra), Hitman 2 (DX12, Ultra), Horizon Zero Dawn (DX12, Ultra), Metro Exodus (DX12, Ultra), Resident Evil 3 (DX12, Ultra), Shadow of the Tomb Raider (DX12, Highest), Strange Brigade (DX12, Ultra), Total War Three Kingdoms (DX11, Ultra), Witcher 3 (DX11, Ultra no HairWorks) at 4K. System comprised of an RX 6800 XT with AMD Radeon Graphics driver 27.20.12031.1000 and an RX 5700 XT with AMD Radeon Graphics driver 26.20.13001.9005. Performance may vary. RX-549

RX-554: Testing done by AMD performance labs 10/21/20, using Assassins Creed Odyssey (DX11, Ultra), Battlefield V (DX12, Ultra), Borderlands 3 (DX12, Ultra), Control (DX12, High), Death Stranding (DX12 Ultra), Division 2 (DX12, Ultra), F1 2020 (DX12, Ultra), Far Cry 5 (DX11, Ultra), Gears of War 5 (DX12, Ultra), Hitman 2 (DX12, Ultra), Horizon Zero Dawn (DX12, Ultra), Metro Exodus (DX12, Ultra), Resident Evil 3 (DX12, Ultra), Shadow of the Tomb Raider (DX12, Highest), Strange Brigade (DX12, Ultra), Total War Three Kingdoms (DX11, Ultra), Witcher 3 (DX11, Ultra no HairWorks) at 4K. System comprised of an RX 6900 XT with AMD Radeon Graphics driver 27.20.12031.1000 and an RX 5700 XT with AMD Radeon Graphics driver 26.20.13001.9005. Performance may vary. RX-554

ROM-169: For a complete list of world records see http://amd.com/worldrecords.
ENDNOTES

Footnotes ROM-557, MI100-03, MI200-01, MI200-02, CZM-1

ROM-557: Estimates based on AMD Server Virtualization TCO (total cost of ownership) Estimator tool v5.5, comparing the AMD EPYC™ and Intel® Xeon® server solutions required to deliver 320 total virtual machines (VM), requiring 1 core and 8GB of memory per VM, with a minimum total solution memory requirement of 2.56 TB of memory. The analysis includes both hardware and virtualization software components. For 320 VMs and 1 core per VM, the Intel® Gold 6250 processor requires 20 - 2P servers. The AMD EPYC™ 7702P solution requires 5 - 1P servers. Virtualization software pricing as of October 2019. Third party names are for informational purposes only and may be trademarks of their respective owners. This scenario contains many assumptions and estimates and, while based on AMD internal research and best approximations, should be considered an example for information purposes only, and not used as a basis for decision making over actual testing. All pricing is in USD. ROM-557

MI100-03: Calculations conducted by AMD Performance Labs as of Sep 18, 2020 for the AMD Instinct™ MI100 (32GB HBM2 PCIe® card) accelerator at 1,502 MHz peak boost engine clock resulted in 11.54 TFLOPS peak double precision (FP64), 46.1 TFLOPS peak single precision matrix (FP32), 23.1 TFLOPS peak single precision (FP32), 184.6 TFLOPS peak half precision (FP16) peak theoretical, floating-point performance. Published results on the NVidia Ampere A100 (40GB) GPU accelerator resulted in 9.7 TFLOPS peak double precision (FP64). 19.5 TFLOPS peak single precision (FP32), 78 TFLOPS peak half precision (FP16) theoretical, floating-point performance. Server manufacturers may vary configuration offerings yielding different results. MI100-03

MI200-01: World’s fastest data center GPU is the AMD Instinct™ MI200X. Calculations conducted by AMD Performance Labs as of Sep 15, 2021, for the AMD Instinct™ MI200X (128GB HBM2e OAM module) accelerator at 1,700 MHz peak boost engine clock resulted in 95.7 TFLOPS peak theoretical double precision (FP64), 95.7 TFLOPS peak theoretical single precision matrix (FP32 Matrix), 47.9 TFLOPS peak theoretical single precision (FP32), 383.0 TFLOPS peak theoretical half precision (FP16), and 383.0 TFLOPS peak theoretical BFloat16 format precision (BF16) floating-point performance. Calculations conducted by AMD Performance Labs as of Sep 18, 2020 for the AMD Instinct™ MI100 (32GB HBM2 PCIe® card) accelerator at 1,502 MHz peak boost engine clock resulted in 11.54 TFLOPS peak theoretical double precision (FP64), 46.1 TFLOPS peak theoretical single precision matrix (FP32), 23.1 TFLOPS peak theoretical single precision (FP32), 184.6 TFLOPS peak theoretical half precision (FP16) floating-point performance. Published results on the NVidia Ampere A100 (80GB) GPU accelerator, boost engine clock of 1410 MHz, resulted in 19.5 TFLOPS peak double precision tensor cores (FP64 Tensor Core), 9.7 TFLOPS peak single precision (FP64), 19.5 TFLOPS peak half precision (FP16), 312 TFLOPS peak half precision (FP16 Tensor Flow), 39 TFLOPS peak BFloat16 (BF16), 312 TFLOPS peak BFloat16 format precision (BF16 Tensor Flow), theoretical floating-point performance. The TF32 data format is not IEEE compliant and not included in this comparison. https://www.nvidia.com/content/dam/en-xx/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf, page 15, Table 1.

MI200-02: Calculations conducted by AMD Performance Labs as of Sep 15, 2021, for the AMD Instinct™ MI200X accelerator (128GB HBM2e OAM module) at 1,700 MHz peak boost engine clock resulted in 95.7 TFLOPS peak double precision matrix (FP64 Matrix) theoretical, floating-point performance. Published results on the NVidia Ampere A100 (80GB) GPU accelerator resulted in 19.5 TFLOPS peak double precision (FP64 Tensor Core) theoretical, floating-point performance. Results found at https://www.nvidia.com/content/dam/en-xx/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf, page 15, Table 1.

CZM-1: ‘Best Mobile Processors’ is defined as having the highest multi-thread processing performance in each of four (4) classes of Ryzen 5000 series processors. Testing by AMD engineering using the Cinebench R20 nT benchmark, measuring multi-threaded performance of a Ryzen 9 5900HX processor engineering sample vs Core i9-10980HK, Ryzen 7 5800U processor engineering sample vs Core i7-1185G7 processor, the Ryzen 5 5600U processor engineering sample vs Core i5-1135G7 processor, and a Ryzen 3 5400U processor engineering sample vs Core i3-1115G4 processor. Performance may vary. CZM-1
CJM-34: Performance projection by AMD engineering staff based on calculated total system power with an AMD Ryzen 7 5800U vs Ryzen 7 4800U system engaged in continuous sleep, idle, video playback, and Mobilemark 2018 on an AMD Reference Platform configured with a 53WHr battery. CJM-34

CJP-17: ‘Best Mobile Processors for business’ is defined as having the highest multi-thread processing performance in each of three (3) classes of Ryzen PRO 5000 series processors. Testing by AMD engineering using the Cinebench R20 nT benchmark, measuring multithreaded performance of a Ryzen 7 PRO 5850U processor engineering sample vs Core i7-1185G7 processor, the Ryzen 5 PRO 5650U processor engineering sample vs Core i5-1135G7 processor, and a Ryzen 3 PRO 5450U processor engineering sample vs Core i3-1115G4 processor. Performance may vary. CJP-17

R5K-002: Testing by AMD performance labs as of 9/2/2020 based on the average FPS of 40 PC games at 1920x1080 with the High image quality preset using an AMD Ryzen™ 9 5900X processor vs. Core i9-10900K. Results may vary. R5K-002

R5K-007: Testing by AMD Performance Labs as of 09/01/2020 using Cinebench R20 nT versus system wall power during full load CPU test using a Core i9-10900K, Ryzen 9 3900XT, Ryzen 9 5900X, Ryzen 9 3950X, and a Ryzen 9 5950X configured with: 2x8GB DDR4-3600, GeForce RTX 2080 Ti, Samsung 860 Pro SSD, Noctua NH-D15s cooler, and an open-air test bench with no additional power draw sources. Results may vary. R5K-007

R5K-009: Testing by AMD performance labs as of 09/01/2020 measuring gaming performance of a Ryzen 9 5900X desktop processor vs. a Ryzen 9 3900XT in 11 popular titles at 1920x1080, the High image quality preset, and the newest graphics API available for each title (e.g. DirectX® 12 or Vulkan™ or DirectX® 11). Results may vary. R5K-009

RX-558: Testing done by AMD performance labs October 20 2020 on a Radeon RX 6900 XT and Radeon RX 5700 XT (20.45-201013n driver), AMD Ryzen 9 5900X (3.70GHz) CPU, 16GB DDR4-3200MHz, Engineering AM4 motherboard, Win10 Pro 64. The Following games were tested at 4k at max settings: Battlefield V DX11, Doom Eternal Vulkan, Forza DX12, Resident Evil 3 DX11, Shadow of the Tomb Raider DX12. Performance may vary. RX-558

RX-549 - Testing done by AMD performance labs 10/16/20, using Assassins Creed Odyssey (BX11, Ultra), Battlefield V (DX12, Ultra), Borderlands 3 (DX12, Ultra), Control (DX12, High), Death Stranding (DX12 Ultra), Division 2 (DX12, Ultra), F1 2020 (DX12, Ultra), Far Cry 5 (DX11, Ultra), Gears of War 5 (DX12, Ultra), Hitman 2 (DX12, Ultra), Horizon Zero Dawn (DX12, Ultra), Metro Exodus (DX12, Ultra), Resident Evil 3 (DX12, Ultra), Shadow of the Tomb Raider (DX12, Highest), Strange Brigade (DX12, Ultra), Total War Three Kingdoms (DX11, Ultra), Witcher 3 (DX11, Ultra no HairWorks) at 4K. System comprised of a Radeon RX 6800 XT with AMD Radeon Graphics driver 27.20.12031.1000 and an Radeon RX 5700 XT with AMD Radeon Graphics driver 26.20.13001.9005. Performance may vary. RX-549

GD-127: Radeon FreeSync technology requires a monitor and AMD Radeon™ graphics, both with FreeSync support. See www.amd.com/freesync for complete details. Confirm capability with your system manufacturer before purchase. GD-127

RX-661: Testing done by AMD performance labs April 9 2021, on 25 games at 1440p using the flagship AMD RDNA 2 mobile part versus the flagship AMD RDNA mobile part. Performance may vary. RX-661

RPW-363: on average, the AMD Radeon™ PRO W6800 pre-production sample (RDNA™ 2 Architecture) requires ~56% of time vs. the AMD Radeon PRO W5700 (RDNA™ Architecture) to complete the set of rendering tasks in Lumion v.11, Topaz Video Enhance AI 2.0.0, Dassault Systèmes SOLIDWORKS® Visualize 2021 SP3 on average, the AMD Radeon™ PRO W6800 pre-production sample (RDNA™ 2 Architecture) is ~1.79x as fast as (179% as fast as, 79% faster than) the AMD Radeon PRO W5700 (RDNA™ Architecture) in a set of rendering tasks in Lumion v.11, Topaz Video Enhance AI 2.0.0, Dassault Systèmes SOLIDWORKS® Visualize 2021 SP3 on average, the AMD Radeon™ PRO W6800 pre-production sample (RDNA™ 2 Architecture) requires ~52% of time vs. the AMD Radeon PRO WX 9100 (GCN Architecture) to complete the set of rendering tasks in Lumion v.11, Topaz Video Enhance AI 2.0.0, Dassault Systèmes SOLIDWORKS® Visualize 2021 SP3 on average, the AMD Radeon PRO W6800 pre-production sample (RDNA™ 2 Architecture) is ~1.94x as fast as (194% as fast as, 94% faster than) the AMD Radeon PRO WX 9100 (GCN Architecture) in a set of rendering tasks in Lumion v.11, Topaz Video Enhance AI 2.0.0, Dassault Systèmes SOLIDWORKS® Visualize 2021 SP3 on average, the AMD Radeon™ PRO W5700 (RDNA™ Architecture) requires 90% of time vs. the AMD Radeon PRO WX 9100 (GCN Architecture) to complete a set of rendering tasks in Lumion v.11, Topaz Video Enhance AI 2.0.0, Dassault Systèmes SOLIDWORKS® Visualize 2021 SP3 on average, the AMD Radeon™ PRO W5700 (RDNA™ Architecture) is ~1.11x as fast as (111% as fast as, 11% faster than) the AMD Radeon PRO WX 9100 (GCN Architecture) in a set of rendering tasks in Lumion v.11, Topaz Video Enhance AI 2.0.0, Dassault Systèmes SOLIDWORKS® Visualize 2021 SP3

CZM-119: The Ryzen 5000 series processors are the highest-rated current generation processors averaged across major e-tailer sites worldwide from November 2020 - September 2021. CZM-119
Reconciliation of GAAP to Non-GAAP Gross Profit and Gross Margin

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAAP gross profit</td>
<td>$2,447</td>
<td>$2,868</td>
<td>$4,347</td>
</tr>
<tr>
<td>GAAP gross margin %</td>
<td>38%</td>
<td>43%</td>
<td>45%</td>
</tr>
<tr>
<td>Impairment of technology licenses</td>
<td>45</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Stock-based compensation</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Non-GAAP gross profit</td>
<td>$2,496</td>
<td>$2,874</td>
<td>$4,353</td>
</tr>
<tr>
<td>Non-GAAP gross margin %</td>
<td>39%</td>
<td>43%</td>
<td>45%</td>
</tr>
</tbody>
</table>
APPENDICES

Reconciliation of GAAP to Non-GAAP Net Income / Earnings Per Share

<table>
<thead>
<tr>
<th>(Millions, except per share data)</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAAP net income / earnings per share</td>
<td>$337</td>
<td>$341</td>
<td>$2,490</td>
</tr>
<tr>
<td>Loss on debt redemption/conversion</td>
<td>12</td>
<td>176</td>
<td>54</td>
</tr>
<tr>
<td>Non-cash interest expense related to convertible debt</td>
<td>24</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>Stock-based compensation</td>
<td>137</td>
<td>197</td>
<td>274</td>
</tr>
<tr>
<td>Impairment of technology licenses</td>
<td>45</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Equity loss (income) in investee</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Loss contingency on legal matter</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Acquisition-related costs</td>
<td>—</td>
<td>—</td>
<td>14</td>
</tr>
<tr>
<td>Release of valuation allowance on deferred tax assets</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Income tax provision</td>
<td>—</td>
<td>8</td>
<td>43</td>
</tr>
<tr>
<td>Withholding tax refund including interest</td>
<td>(43)</td>
<td>(0.04)</td>
<td>—</td>
</tr>
<tr>
<td>Non-GAAP net income / earnings per share</td>
<td>$514</td>
<td>$756</td>
<td>$1,575</td>
</tr>
</tbody>
</table>

Shares used and net income adjustment in earnings per share calculation

Shares used in per share calculation (GAAP)	1,064	1,120	1,207
Interest expense add-back to GAAP net income	—	—	—
Shares used in per share calculation (Non-GAAP)	1,165	1,209	1,228
Interest expense add-back to Non-GAAP net income	18	16	4
DISCLAIMER & ATTRIBUTION

Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change.

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

©2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Athlon, EPYC, Infinity Fabric, Instinct, Radeon, RDNA, ROCm, Ryzen, Ryzen Threadripper and combinations thereof are trademarks of Advanced Micro Devices, Inc. Microsoft is registered trademark of Microsoft Corporation in the US and other jurisdictions. SPEC®, SPECrate®, SPECint and SPEC CPU® are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
