Revolutionizing the treatment of Cystic Fibrosis through our unique BOLT Phage therapy platform
Safe Harbor Statement

This presentation contains certain “forward-looking statements” within the meaning of the “safe harbor” provisions of the U.S. Private Securities Litigation Reform Act of 1995. Forward-looking statements can be identified by words such as: “target,” “believe,” “expect,” “will,” “may,” “anticipate,” “estimate,” “would,” “positioned,” “future,” and other similar expressions that predict or indicate future events or trends or that are not statements of historical matters. Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based only on BiomX management’s current beliefs, expectations and assumptions. For example, when we discuss our expectations regarding the sufficiency of our cash runway into the third quarter of 2024, the ability of our products to address unmet medical needs, the design, aim, expected timing and results of our preclinical and clinical trials and studies, including delay of certain development programs, our pipeline, our ability to quickly generate clinical proof of concept in patients, the potential safety or efficacy of BX004 and the expected timing of data for Part 2 of our Phase 1b/2a trial of BX004 and the advantages of our BOLT platform we are making forward-looking statements. Because forward-looking statements relate to the future, they are subject to inherent uncertainties, risks and changes in circumstances that are difficult to predict and many of which are outside of our control. Actual results and outcomes may differ materially from those indicated in the forward-looking statements. Therefore, you should not rely on any of these forward-looking statements. You should review additional disclosures we make in our filings with the Securities and Exchange Commission (the “SEC”), which are available on the SEC’s website at www.sec.gov. Except as required by law, we are under no duty to (and expressly disclaim any such obligation to) update or revise any of the forward-looking statements, whether as a result of new information, future events or otherwise.
Executive Summary

Unmet need in cystic fibrosis

- Improved treatment has shifted CF from being a disease of childhood to a disease of adulthood. As patients age, *Pseudomonas aeruginosa* (PsA) lung infections become the leading cause of morbidity and mortality.
- Prolonged antibiotic treatments lead to significant resistance, creating a large unmet need - an estimated 17,000 CF patients in the US and Western Europe with chronic PsA infections\(^1\).

BX004 – our lead program

- BX004, our proprietary phage cocktail, has the potential to treat CF patients with chronic resistant PsA lung infections, providing a significant potential commercial opportunity of > $1 billion\(^2\).
- Positive results from Part 1 of the Phase 1b/2a study showed, at Day 15, that for patients treated with BX004 mean PsA burden was reduced by 1.42 log10 CFU/g compared to 0.28 log10 CFU/g in the placebo group.
- Readout for Part 2 of the study expected in November 2023. Study design in collaboration with the CF Foundation.

Our Bolt phage technology

- Our proprietary BOLT phage technology platform - which is based on advanced machine learning – was used to design the BX004 phage cocktail that *in vitro* overcomes antibiotic resistance, biofilms and other bacterial defense systems.

Financing and investors

- Publicly traded (NYSE American:PHGE).
- Backed by prominent biotech investors such as Orbimed, Johnson & Johnson and the CF Foundation.

1. See slides 11 and 12
2. See slide 22
Strong leadership and scientific team

Management

Jonathan Solomon - Chief Executive Officer, Director
 • Former co-Founder and CEO Proclara

Merav Bassan, PhD - Chief Development Officer
 • 20 years drug and clinical development at Teva

Assaf Oron - Chief Business Officer
 • Former EVP business development at Evogene

Marina Wolfson, CPA - Chief Financial Officer
 • Former Bioview, E&Y

Inbal Benjamini-Etrant – Chief HR Officer
 • Former HR roles at Teva and Herzog Law

Board of Directors

Russell Greig, PhD - Chairman of the Board
 • Former president of GSK Pharma International & SR one, GSK corporate venture group

Alan Moses, MD - Director
 • Former Global Chief Medical Officer of Novo Nordisk

Lynne Sullivan - Director
 • Former Senior Vice President of Finance for Biogen

Jason Marks - Director
 • Former Executive Vice President, Chief Legal and Compliance Officer at Amarin Corporation plc

Michael Dambach - Director
 • Vice President and Treasurer of Biogen Inc.

Scientific Team

Prof. Rotem Sorek
 • Head of microbial genomics group at Weizmann Institute
 • Phage genomics and CRISPR research

Prof. Eran Elinav
 • Principal investigator at Weizmann Institute
 • Immune system and intestinal microbiome interactions

Prof. Timothy K. Lu
 • Associate professor leading synthetic biology group, MIT
 • Synthetic biology, biochemical engineering

Prof. Eitan Kerem
 • Former Chairman of Pediatric Pulmonology Unit, Hadassah Medical Center
 • World leader in CF care and research
CYSTIC FIBROSIS
The Unmet Need
CF is an inherited disease caused by a mutation on the CFTR protein

- The CFTR protein is present on epithelial cells throughout the body. It is a chloride ion channel involved in maintaining water and ion homeostasis on cell surfaces.
- The disease causes severe damage to the lungs, digestive system and other organs with > 80% of deaths from respiratory failure.
- 105K individuals are estimated to live with CF worldwide, with 33k in the US alone.

In CF lungs, mutations cause thick and sticky mucus that provides an environment for bacteria to infect and propagate. In the less hydrated periciliary layer, the cilia are flattened and the ability to clear bacterial infection reduced.

CF Foundation estimates across 94 countries (https://www.cff.org/intro-cf/about-cystic-fibrosis)
Plackett, Nature 2020
Gibson et al., 2003; Stuart et al., 2010
Declining incidence is offset by increased survival through improved treatment resulting in CF being shifted from being a disease of childhood to being a disease of adulthood.

*Using the currently recommended method for calculating median predicted survival. For more information about the methodology, please see the Technical Supplement available at cff.org.

From the patient perspective, CF treatment is complex and requires a high degree of adherence to schedules and treatment.

- Daily treatment burden for adults includes 7 daily medications, from CF antibiotics that are inhaled or IV to oral CFTR modulators that are designed to correct the malfunctioning protein made by the CFTR gene.
- Trikafta, the main CF drug combination used today, costs ~$300K annually per patient in the US, while a lung transplant costs -$1M.
- The global CF therapeutic market was estimated at $10 billion in 2021.

Complexity of CF Treatment

- **Chest physiotherapy**
- **Pancreatic enzyme replacement**
- **Dietary and vitamin supplements**
- **Daily medical treatments**
- **Respiratory medications**

- **CFTR modulators** (Trikafta)
- **Anti inflammatory** (e.g. Azithromycin)
- **Treatment of complications** (drugs for diabetes or liver disease, osteoporosis)
- **Inhaled antibiotics** (e.g. Tobramycin)
- **Inhalations to improve mucociliary clearance** (e.g. Pulmozyme)

CFF 2021 patient registry annual data report
2021 market size based on Vertex earnings, Cystic Fibrosis Therapeutics Market and Forecast 2020-2027 report (iHealthcase/Analyst)
Pseudomonas aeruginosa (PsA) bacteria are associated with decreased lung function (FEV1) and damaged lung epithelium.

PsA colonization associated with lower FEV1 at all ages

![Graph showing FEV1 pred vs age with PsA colonization]

PsA forms biofilm patches in the lungs

![Image showing biofilm patches with PsA aggregates and inflammatory cells]

Arrows show aggregates of PsA (red) within biofilm patches and surrounded by inflammatory cells (Blue).

PsA bacteria and biofilm lead to persistent inflammation causing tissue damage and eventually necrosis of lung tissue.

1. Kerem et al., ECFS unpublished data, 2013
2. Bjarnsholt et al., Trends in Microbiology 2013
Antibiotics were effective 2 decades ago in treating PsA infections

Tobramycin showed (study conducted 1995-96) up to 2.2 log bacterial reduction and 8-12% FEV1 improvement (compared to placebo)

Phase 3 Efficacy and Safety Study of Tobramycin Inhaled Solution (1995-96)*

Change in Density of P. aeruginosa (log10 CFU/g of sputum)

Week

Change in FEV1 (% of predicted value)

Week

Over the last 2 decades, with the rise of antibiotic resistance, benefits of inhaled antibiotics have diminished

*n=520; 52% >18 yrs; treated in 28 day on/off cycles
Chronic *PsA* infections have become a persistent problem due to antibiotic resistance driving morbidity and mortality in CF

- Chronic pulmonary infections and the resulting robust but ineffective inflammatory response, culminating in respiratory failure, are the primary causes of death in CF patients.
- After prolonged and repeated antibiotic courses, increased resistance to antibiotics has lowered efficacy, creating a large unmet need for CF patients suffering from Chronic *PsA* - Estimated at **17,000 patients in the US and Western Europe**¹

Phases of *P. aeruginosa* infection in CF²

<table>
<thead>
<tr>
<th>Phase</th>
<th>Antibiotics</th>
<th>Clonal selection</th>
<th>Biofilm formation</th>
<th>Genotype/phenotypic adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermittent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lack of antibiotic efficacy driven by:

1. *PsA* strains with multidrug resistance (MDR)
2. Formation of biofilm => making infection harder to treat

1. CFF Annual Data Report 2019, ECFS patient registry report, 2020
2. Nicole M. Bouvier et al., 2016
US Opportunity: Of an estimated 14.6K CF patients who cultured positive for PsA (2019), ~9.4K (65%) were not successfully treated with antibiotics

In the US alone, over 8,000 CF patient with chronic PsA infections not successfully treated with antibiotics
BX004 – BiomX’s proprietary phage cocktail targeting *PsA* has the potential to treat CF patients with chronic *PsA* lung infections

- **Product** – Proprietary phage cocktail targeting *PsA*
- **Patient population** – CF patients with chronic *PsA* lung infections
- **Delivery** – Nebulized
- **Key features** – Potentially effective on antibiotic resistant strains, enables breakdown of biofilm
- **Potential impact:**
 - Suppression/eradication of *PsA* (CFU in sputum)
 - Improved lung function (FEV1)
 - Fewer exacerbations, hospitalizations
 - Increased efficacy of antibiotic treatment
 - Reduce oral, inhaled and IV antibiotic treatments
Intro To PHAGE
Phage: Nature’s precision tool to target bacteria

1. SPECIFIC
Each phage binds only to specific bacterial strains

2. KILLING MECHANISM ORTHOGONAL TO ANTIBIOTICS
Lysin proteins burst bacterial cell wall from within

3. BREAKDOWN BIOFILM
Phage can breakdown biofilm (a polysaccharide mesh secreted by bacteria)

4. AMPLIFY
Phage components multiply and assemble within bacterial cell

5. SAFETY PROFILE
100s of compassionate use cases with no significant side effects to date

Kortright et al. (2019), Cell Host & Microbe
Key challenges in developing phage therapies

- **Host range** - Narrow specificity to a subset of bacterial strains
- **Resistance** - Bacterial defense systems (e.g. CRISPR)
- **CMC** – Manufacturing (e.g. purity, stability)

And many other considerations

- Phage titer
- Biofilm breakdown
- Absence of toxic genes
- Other

The BiomX platform addresses the key challenges in phage therapy development

Data (bacteria+phage)
- Public sources
- BiomX proprietary

In-silico profiling
- Sequencing, clustering, undesirable genes, taxonomy, Defense systems, prophage, lysogeny, mobile elements

Machine learning & validation
- Optimize cocktail for:
 - Host range
 - Resistance

Optimized phage cocktail
- Phage-Bacteria Receptor analysis:
 - Prediction & validation

CMC
- State of the art in-house GMP facility
 - DS scale – 18-40L Bioreactor/batch
 - Advanced formulations – oral, topical, inhaled
 - Computational characterization for contaminants
 - Synthetic biology of hosts for purity

Optimized phage cocktail
- GMP grade material
Numerous compassionate treatments of CF patients with phage provide strong rationale for the development of BX004

11 CF patients treated for *P. aeruginosa*\(^\text{1-4}\)

- **Indication** - *P. aeruginosa* AMR lung infections
- **Location** – 8 Yale University, 2 Georgia, 1 San-Diego
- **Administration** – 10 nebulized, 1 IV phage

Yale cases:
- eIND path for 8 CF patients
- Nebulized phage
- 7-10 days, single or multiple rounds
- **Post phage therapy *P. aeruginosa* CFU titers decreased significantly (2.2 ± 0.76 log reduction)**
- **Outcome** - FEV1% increased in a range of 0 to 8.9%

14 CF patients treated for Mycobacterium (20 patient total)\(^5\)

- **Indication** - Non-tuberculous Mycobacterium infections. Lung infections in all CF patients
- **Location** – San Diego (UCSD)
- **Administration** – 20 IV, certain patient also received nebulized/topical/other routes

UCSD cases:
- eIND path for all patients
- IV phage (+ additional nebulized phage for certain patients)
- Twice daily for ~6 months (though a favorable outcome required improvement within 8 weeks)
- **Outcome** - Favorable clinical or microbiological responses in 11/20 patients (for 5 patients infection resolved)

Results demonstrate the potential to decrease bacterial burden and improve clinical outcome

1. Kutateladze et al., 2008
2. Kvachadze et al., 2011
3. Law et al., 2019
4. Stanley et al., 2020
5. Dedrick et al. 2022
BX004 has demonstrated *in vitro* penetration of biofilm and activity on antibiotic resistant *PsA* strains

BX004 penetrates biofilm *in vitro*

Bacterial count

<table>
<thead>
<tr>
<th>Control</th>
<th>BX004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imipenem 200 µg/ml</td>
<td>Phage cocktail</td>
</tr>
<tr>
<td>Colony forming units / well</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing bacterial count comparison between Control and BX004](image)

p-value <0.001

BX004 active *in vitro* on antibiotic resistant *PsA* strains

BX004 was active in killing all 96 strains described below displaying multiple antibiotic resistant genes

<table>
<thead>
<tr>
<th>Strains of PsA (n=96)</th>
</tr>
</thead>
</table>

Presence/absence of known genes conferring antibiotic resistance

- **Present**
- **Absent**

Biofilm was grown from *PsA* for 24 hours and then treated with BX004 for 6 hours (control-untreated wells). Treatment with antibiotics not shown

Crystal violet – Used for biomass staining of biofilm. Staining substantially reduced following treatment with BX004

BiomX internal results
Phase 1b/2a study targeting PsA – Part 2 readout expect in 3Q 2023

<table>
<thead>
<tr>
<th>Phase 1b/2a – Part 1 (actual n=9)</th>
<th>Phase 1b/2a – Part 2 (planned n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>Objectives</td>
</tr>
<tr>
<td>• Safety, PK and microbiologic/clinical activity</td>
<td>• Safety and efficacy</td>
</tr>
<tr>
<td>Endpoints</td>
<td>Endpoints</td>
</tr>
<tr>
<td>• Safety and tolerability</td>
<td>• Safety and tolerability</td>
</tr>
<tr>
<td>• Decrease in PsA burden</td>
<td>• Decrease in PsA burden</td>
</tr>
<tr>
<td>• Sputum pharmacokinetics</td>
<td>• Sputum pharmacokinetics</td>
</tr>
<tr>
<td>• FEV1 (forced expiratory volume)</td>
<td>• FEV1 (forced expiratory volume)</td>
</tr>
<tr>
<td>• CFQ-R (CF Questionnaire-Revised) and CRISS</td>
<td>• CFQ-R (CF Questionnaire-Revised) and CRISS</td>
</tr>
<tr>
<td>Study Population</td>
<td>Study Population</td>
</tr>
<tr>
<td>• CF patients with chronic PsA infection</td>
<td>• CF patients with chronic PsA infection</td>
</tr>
<tr>
<td>9 Subjects</td>
<td>At least 24 subjects</td>
</tr>
<tr>
<td>• 7 received nebulized BX004 phage therapy</td>
<td>• 16 receive nebulized BX004 phage therapy</td>
</tr>
<tr>
<td>• 2 received nebulized placebo</td>
<td>• 8 receive nebulized placebo</td>
</tr>
<tr>
<td>• 7 days duration (3 ascending, 4 multiple dosing)</td>
<td>• 2:1 randomization</td>
</tr>
<tr>
<td>Key Design Features</td>
<td>• 10 days duration of treatment</td>
</tr>
<tr>
<td>• Single ascending dose followed by multiple doses</td>
<td></td>
</tr>
</tbody>
</table>

Study design informed by input from the CF Foundation
Phase 1b/2a Part 1 results: Mean PsA CFU reduction at Day 15 (compared to Baseline): -1.42 log (BX004) vs. -0.28 log (Placebo)

<table>
<thead>
<tr>
<th></th>
<th>BX004</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>-1.42 (1.03)</td>
<td>-0.28 (0.13)</td>
</tr>
<tr>
<td>Max, Min</td>
<td>-3.27, -0.37</td>
<td>-0.37, -0.18</td>
</tr>
</tbody>
</table>
Phase 1b/2a Part 1 – Additional results highlights

• No safety events related to treatment with BX004

• Mean *P. aeruginosa* CFU reduction at Day 15 (compared to Baseline): $-1.42 \log_{10} \text{CFU/g}$ (BX004) **compared to** $-0.28 \log_{10} \text{CFU/g}$ (placebo) on top of standard of care inhaled antibiotics

• Phage were detected in all patients treated with BX004 during dosing period, including, in several patients, up to Day 15 (one week after end of therapy). No phage were detected in patients receiving placebo

• Among BX004 treated patients, there was no emerging resistance to BX004 during or after treatment

• As expected, likely due to short course of therapy, no effect on % predicted FEV1

The Phase 1b/2a clinical trial is the first reported double blind placebo-controlled study evaluating a cocktail-based phage product to show notable reductions in bacterial burden in cystic fibrosis
BX004 provides significant commercial opportunity, potentially commanding a market > $1 billion

<table>
<thead>
<tr>
<th>Patient population (US)</th>
<th>BX004</th>
<th>References/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>~8,000</td>
<td></td>
<td>Number of CF patients with chronic PsA infections¹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential effect on PsA CFU in lungs</th>
<th>BX004</th>
<th>References/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppression/eradication of PsA (CFU in sputum)</td>
<td></td>
<td>Magnitude observed under Tobramycin Phase 3 study was ~1.5-2 log²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential impact on lungs</th>
<th>BX004</th>
<th>References/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved lung function (FEV1)</td>
<td></td>
<td>Magnitude observed under Tobramycin Phase 3 study was 8-12%²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential pricing in the US</th>
<th>BX004</th>
<th>References/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100K - $120K annually per patient</td>
<td></td>
<td>Benchmarks (cost annually per patient): Trikafta: $300K, alternating antibiotics treatment, Tobi Podhaler and Cayston solution: $80K, Arikayce for MAC: $100-120K³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market potential</th>
<th>BX004</th>
<th>References/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>~$1 Billion in the US alone (worldwide $1.6 billion)⁴</td>
<td></td>
<td>US patient population times potential pricing</td>
</tr>
</tbody>
</table>

1. CFF 2019 Patient Registry Annual Data Report
2. See previous slide on Tobramycin study
3. Trikafta and Arikayce – Publicly announced pricing, First Databank, Jan. 8, 2021, public pricing information, for alternating Tobi Podhaler and Cayston solution assumes 65% compliance
4. Assumes rest of the world outside US comprises 40% of total market. Based on current distribution in CF therapeutic market (iVertex annual report, Cystic Fibrosis Therapeutics Market and Forecast 2020-2027 report (iHealthcaseAnalyst))
Regulatory path for BX004

According to FDA guidance under BiomX pre-IND and IND:

- Phage are inert to mammalian cells => considered safe if lytic, do not carry virulent genes and have no generalized transduction.
 Accordingly:
 - **No need for GLP general toxicology studies**
 - **No need for healthy volunteer clinical studies** (conducted in target carrier population)
 - Phage in cocktail may be exchanged during development provided adequate characterization

According to public communications from the FDA:

- No regulatory hurdles for engineered synthetic phage aimed at improving intrinsic characteristics
- Potentially allows development of personalized therapies based on a dynamic phage library using an approved manufacturing platform

FDA granted BX004 Fast Track designation, which enables enhanced communication with the FDA, rolling submission and priority review of BLA.

Other potential expedited programs/designations include: Breakthrough, Priority Review, Accelerated Approval and Orphan Drug Designation
IP protection of phage cocktails

CORE IP APPLICATIONS:

Natural phage cocktails
- Composition claims on combinations of phage in cocktail/s based on additive/synergistic effects (e.g. combinations of phage avoiding development of resistance due to multiple MOAs)
- Method claims for use of the combinations against the infecting bacteria

Synthetic phage cocktails
- Composition claims on new synthetic matter on each specific synthetic phage and the phage combination of the cocktail (e.g. a synthetic phage where a heterologous gene was added conferring traits, such as improved biofilm breakdown capabilities)

SUPPLEMENT IP APPLICATIONS:
- Claim product aspects invented in later product development such as effective formulations, delivery device features, manufacturing methods, synthetic engineering of manufacturing host or other

Novel combination of natural phage

Synthetically engineered phage
PIPELINE
Bolt end to end platform allows entering clinical POC within 12-18 months

1. Strong safety profile of naturally occurring phage supported by regulatory feedback allows proceeding to Phase 1/2 studies without preclinical safety studies or Phase 1 studies in healthy volunteers.

2. In certain indications, the length of entering clinical validation may be longer depending on indication, identity of target bacteria and other factors.

3. Usually, we would develop an optimized phage therapy, which is comprised of several phage (a phage cocktail) optimized to address multiple characteristics such as bacterial host range, emergence of resistance and other factors. In some cases, we may alternatively develop personalized phage cocktails tailored to target specific strain/s of a given patient. We may complete a clinical POC by treating multiple patients with either an optimized phage cocktail or personalized cocktails.
Pipeline

<table>
<thead>
<tr>
<th>Product Candidates</th>
<th>Phage discovery</th>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystic fibrosis • BX004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atopic dermatitis • BX005*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* On May 24, 2022, we announced that we plan to prioritize the CF program and delay the AD program.
Other potential indications

Prosthetic Joint Infections (PJI)

- **Condition** – Chronic infections in patients who underwent hip or knee joint replacement
- **Cause** - Bacterial infection surrounding joint implant (main bacteria – *Staphylococcus aureus, Staphylococcus epidermidis*)
- **Patient population (2030 est.)** – Cases of revision surgeries with S. aureus/S. epidermidis: 30K annually in US
- **Existing treatment** – Primarily revision surgery
- **Unmet need** – Primarily: avoid a complex and expensive revision surgery. Secondary: Treat patients not suitable for revision surgery
- **Proposed phage product** – A phage cocktail targeting infecting bacteria (*S. aureus, S. epidermidis*), delivered by a local injection and/or during a DAIR procedure

DAIR: Debridement, Antibiotics, Implant Retention

M. avium complex (MAC)

- **Condition** - A rare, progressive & chronic condition
- **Cause** - *Mycobacterium avium* complex (MAC) lung infection
- **Patient population (2022 est.)** – Estimated Number of MAC lung disease patients refractory to treatment (US): 15,000
- **Existing treatment** – Arikayce, other standard antibiotic therapy with up to 29% success rate.
- **Unmet need** – Treatment with higher success rates and/or reduced adverse effects.
- **Proposed phage product** – An oral/inhaled phage cocktail targeting MAC

1. Potential indications are for illustrative purposes only. Potential indications referred to on this slide are at a preliminary stage and subject to further evaluation.
4. Success defined as culture converted by Month 6 (at least 3 consecutive monthly negative sputum cultures), https://www.arikaycehcp.com/culture-conversion/
Thank you