

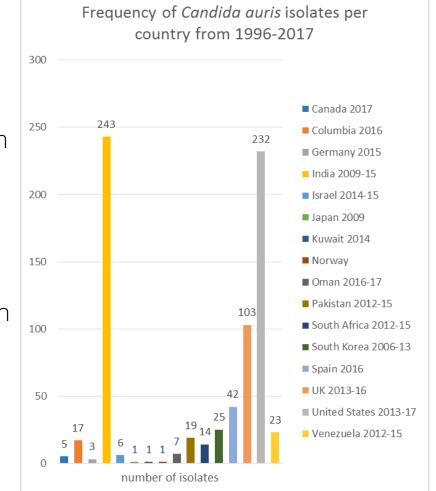
C. auris – a difficult to treat, emerging pathogen

Stephen A. Barat PhD

Committed to positively impacting the lives of patients suffering from difficult-to-treat and often life-threatening infections

Objectives

- To provide a brief background on *C. auris*, an emerging multi-drug resistant organism that presents significant concerns as a pathogen.
- To introduce SCY-078, the first representative of a new class of glucan synthase inhibitors, and it's activity against *C. auris*.


C. auris - Background

- *C. auris* is an emerging, multidrug-resistant yeast that can spread in healthcare settings.
- Initially isolated in 2009 in Japan from a patient's ear canal
 - Invasive infections due to *C. auris* have subsequently been reported in <u>five continents</u>
- Associated with nosocomial outbreaks in intensive care settings and <u>high mortality rates</u>
 - According to the US CDC, more than 1 in 3 patients with invasive *C. auris* infection will die

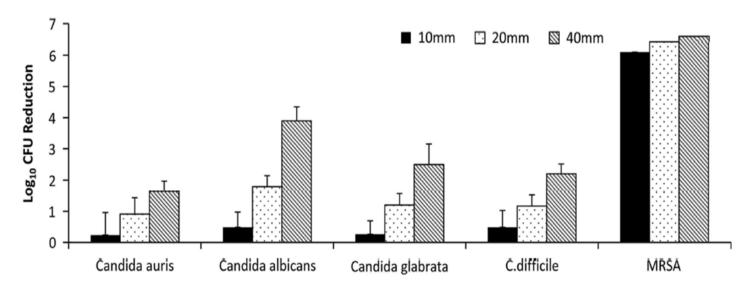
Tsay et.al., CID 2018 and Jeffrey-Smith et.al., Clin Micro Rev 2018, www.cdc.gov/fungal/diseases/candidiasis/pdf/Candida_auris_508.pd

C. auris - Epidemiology

- Has been found on 5 continents and 16 countries
- Causes ear infections, blood stream infections, sepsis, invasive infections
- 4 main clades based on ribosomal DNA
 - o Grouped by geographical origin

Sekyere JO, *Candida auris:* A systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen, MicrobiologyOpen (2018), <u>http://doi.org/10.1002/mbo3.578</u>

C. auris – Challenges for Treatment

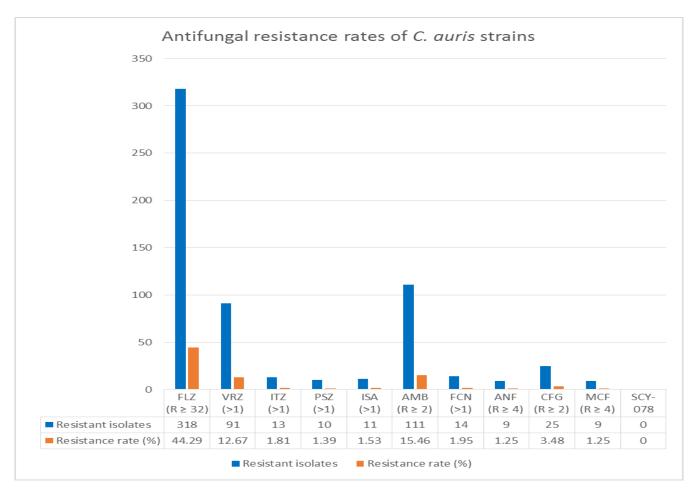

- Often misidentified
 - Cannot use methods such as ChromAgar, BD Phoenix, Microscan
 - Identification requires:
 - MALDI-TOF
 - PCR/real-time PCR
 - Whole genome sequencing
- Can be spread in health care setting
 - Difficult to disinfect; can persist in healthcare environment
 - Persists on skin
 - Transmission can occur between patients

Sekyere, j. Microbiology Open 2018, Tsay et.al., CID 2018

C. auris - UV Disinfection?

- Ultraviolet-C (UV-C) light room decontamination devices are often used in cleaning programs in healthcare facilities.
- *C. auris* is <u>less susceptible</u> to killing by UV-C exposure in comparison to other pathogens.

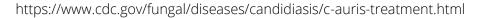
Cadnum JL, Shaikh AA, Piedrahita CT, *et al.*, Relative Resistance of the Emerging Fungal Pathogen *Candida auris* and Other *Candida* Species to Killing by Ultraviolet Light, Infect Control Hosp Epidemiol (2017), <u>https://doi.org/10.1017/ice.2017.239</u>


C. auris – Challenges for Treatment

- Isolates are often multi-drug resistant
 - In a meta-analysis of over 150 publications that identified 742 *C.* auris isolates, most were resistant to fluconazole and/or other azoles and to AMB
 - Resistance to all three classes of compounds (azoles, polyenes and echinocandins) have been reported

Sekyere, j. Microbiology Open 2018, Tsay et.al., CID 2018

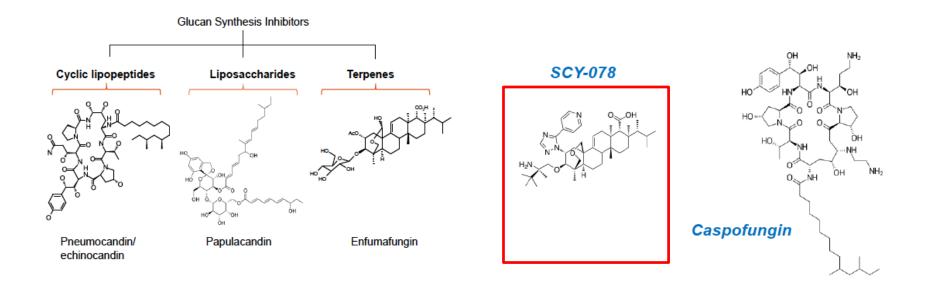
C. auris – Challenges for Treatment



Sekyere JO, *Candida auris:* A systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen, MicrobiologyOpen (2018), <u>http://doi.org/10.1002/mbo3.578</u>

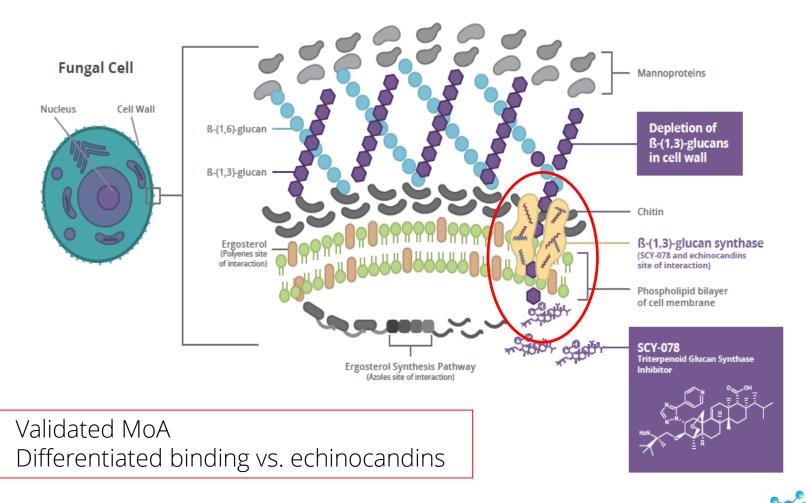
C. auris – Treatment Guidelines

- Based on limited data available to date; the US CDC recommendations for treatment of adults consists of:
 - Initiation of therapy with an echinocandin
 - Due to the potential for rapid resistance development patients should be carefully monitored for clinical improvement and follow-up cultures and repeat susceptibility testing should be conducted
 - Switching to a liposomal amphotericin B (5 mg/kg daily) could be considered if the patient is clinically unresponsive to echinocandin treatment or has persistent fungemia for >5 days.



SCY-078 - Introduction

SCY-078 First-in-Class Triterpenoid Antifungal


- SCY-078 has a distinct molecular structure
- Validated mechanism of action:
 - Inhibition of β -(1,3)-glucan synthase

SCY-078 MoA: Glucan Synthase Inhibitor

Cell Membrane and Cell Wall

٠

•

SCY-078 – *In vitro* activity vs *Candida* spp.

- SCY-078 has been evaluated for activity against >1500 clinical Candida isolates using CLSI and EUCAST methods
 - SCY-078 demonstrated *in vitro* activity against all of the *Candida* spp. isolates tested with MIC₉₀ values ranging from 0.06 ug/mL to 4 ug/mL depending on the species tested
- Demonstrated similar activity against wild-type (WT) and azole-resistant Candida isolates
 - Overall, SCY-078 was effective against > 90% of the azole-resistant strains.
- Has been evaluated *in vitro* against ≈200 echinocandinresistant clinical *Candida* spp. isolates with the majority of these isolates having mutations in the *fks* genes
 - Overall, the majority of the echinocandin-resistant strains tested in these studies <u>remained susceptible</u> to inhibition by SCY-078.
- SCY-078 has also demonstrated activity *in vitro* against bio-films

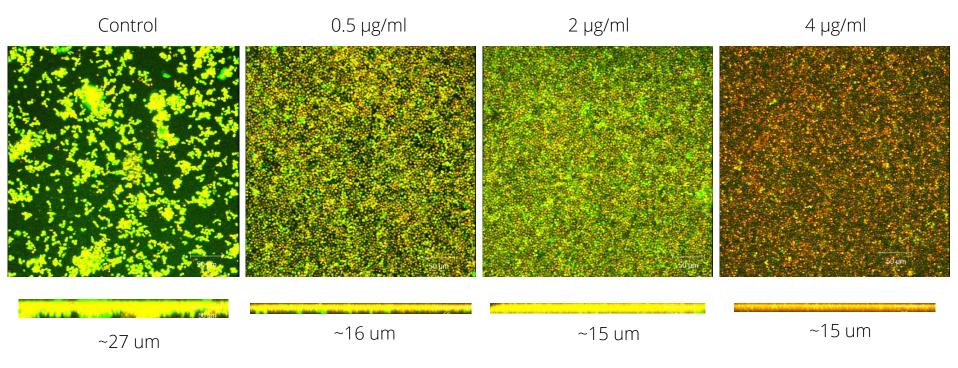
SCY-078 - In Vitro Activity vs *C. auris*

 The activity of SCY-078 against >110 clinical isolates of *C. auris* has been evaluated in two independent studies

	Berkow et.al. (N=100)	Larkin et.al. (N=16)		
	SCY-078 MIC (µg/mL)	SCY-078 MIC (µg/mL)		
Range	0.0625 – 2	0.5 – 2		
Mode	1	1		
MIC50	0.5	1		
MIC90	1	1		

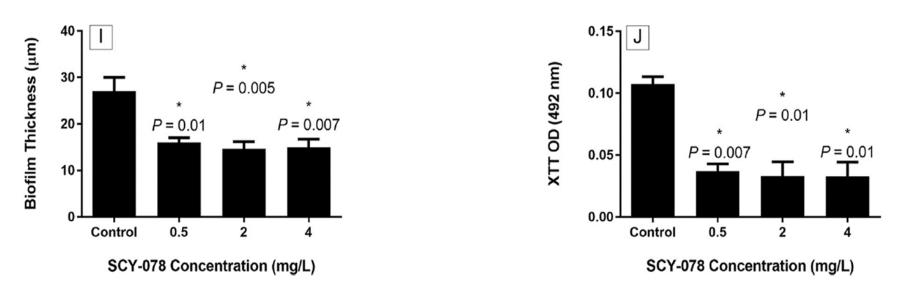
SCY-078 showed activity against all clades of *C. auris* with very little variation in activity between the clades

SCY-078 - In Vitro Activity against ECH-R C. auris


 SCY-078 was active against a panel of *C. auris* isolates with elevated ECH MICs

	Minimum Inhibitory Concentration (µg/ml)								
Isolate	Anidulafungin	Caspofungin	Micafungin	SCY-078					
1	8	1	4	1					
2	16	1	4	1					
3	1	16	1	1					
4	2	16	2	1					
5	4	.5	.5	0.5					
6	>16	>16	>8	0.5					
7	4	>16	1	1					

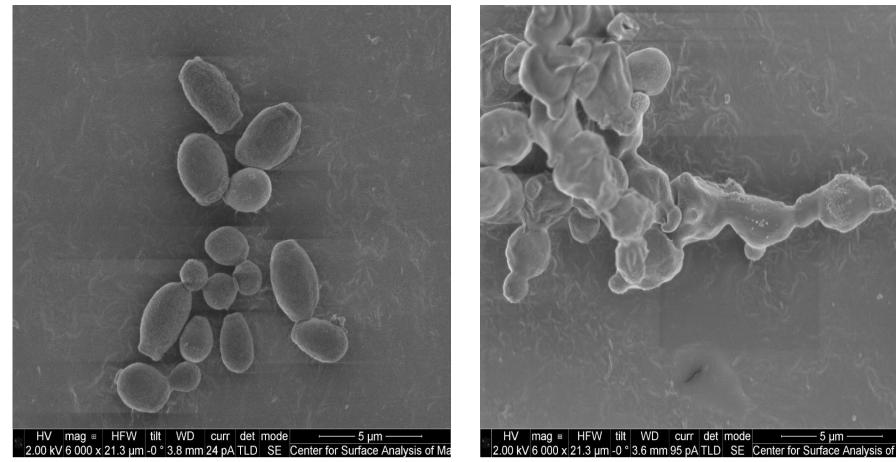
Among seven isolates with elevated MICs to one or more echinocandins, the MIC range of SCY-078 was 0.5 to 1 ug/ml, similar to that observed against the panel of WT isolates


SCY-078 - Activity vs *C. auris* Biofilms

Confocal analysis – A/E = no drug, B/F = SCY-078 0.5 mg/L, C/G= SCY-078 2 mg/L, D/H – SCY-078 4 mg/L *P-value compared to untreated control (P<0.05)

SCY-078 significantly inhibited *C. auris* biofilms at all concentrations tested. (Reduction in green fluorescence resulting from concanavalin A [ConA] binding to polysaccharides)

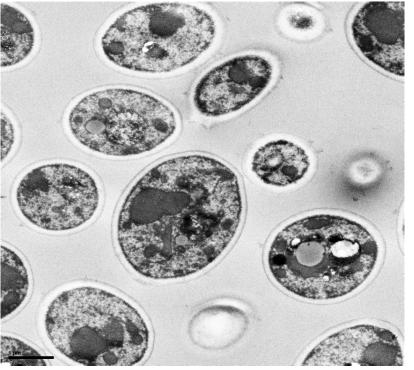
SCY-078 - Activity vs C. auris Biofilms

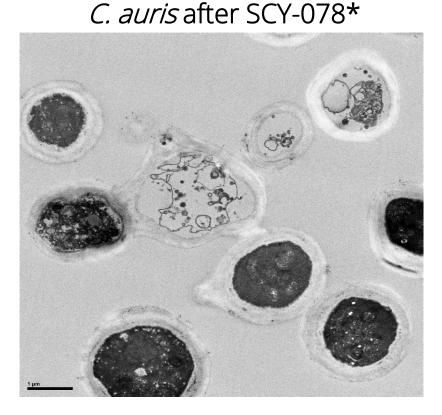


The thickness (I) and metabolic activity (J) of untreated (control) and SCY-078-treated biofilms. *P-value compared to untreated control (P<0.05)

SCY-078 significantly reduced the metabolic activity and thickness of the *C. auris* biofilms at all concentrations tested

Activity of SCY-078 on *C. auris* (SEM) *C. auris* before SCY-078 *C. auris* after SCY-078*


 $^{*}\mbox{C.}$ auris were exposed overnight to SCY-078 at 1X MIC (0.5 $\mu\mbox{g/mL})$ at 35°C


SCY-078 interrupted *C. auris* cell division with the organism forming abnormal fused fungal cells

Activity of SCY-078 on *C. auris* (TEM)

C. auris before SCY-078

*C. auris were exposed overnight to SCY-078 at 1X MIC (0.5 $\mu g/mL)$ at 35°C

- TEM analysis shows that SCY-078 treatment affected the ultrastructure of *C. auris* resulting in:
- Thickening of the outer cell envelop (thick cell wall and disappearance of cell membrane)
- Leakage of cytoplasmic material
- Destruction of the internal cytoplasmic structures where ghost cells were noted
- Abnormal fused fungal cells (confirming results from SEM)

SCY-078 – Ongoing efforts for *C. auris*

- *In vivo* PK/PD models in progress
 - Invasive infection model in mice
 - Cutaneous infection model in guinea pigs
- These *in vivo* models will further expand dose/exposure/response data for PK/PD modeling.
- Additional electron microscopy underway to compare morphological effects with other antifungal agents.

SCY-078 – Ongoing studies for patients with *C. auris*

CARES

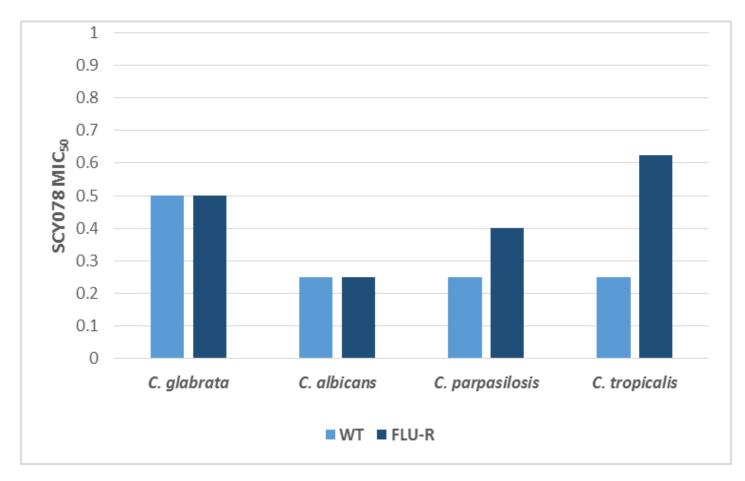
- Open label study allowing inclusion of patients with any *C.auris* infection.
- Currently open for enrollment in the US and soon in India and other territories.

• FURI

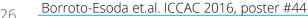
- Open label study intended for patients with Candida infections (including *C. auris*) that are refractory to or intolerant of approved antifungal agents.
- Centers open in US, Germany, Austria.
- Centers in process of opening in UK, Netherlands, Spain and other territories.

- *C. auris* is a multi-drug resistant organism which presents a clear concern for human health.
- *C. auris* is difficult to identify, disinfect and treat.
- SCY-078 is the first representative of a new class of antifungal agents,
 - It has activity against *C. auris*, making it an important addition for antifungal treatment.

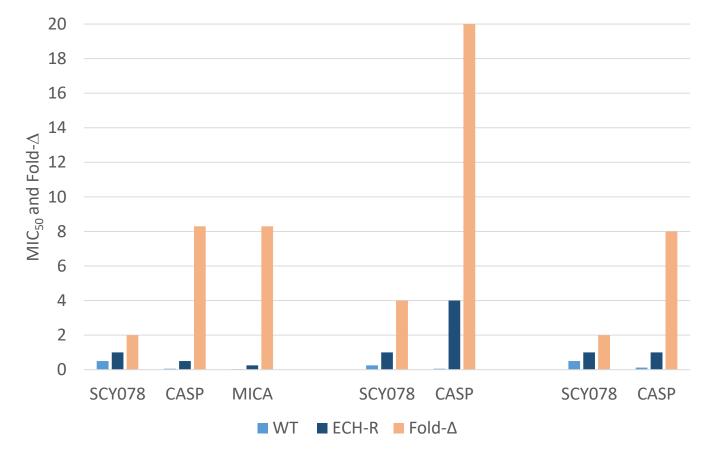
Backup Slides


In Vitro Activity of SCY-078 and Comparators Against Clinical Isolates of Predominant *Candida* spp.

	SCY-078ª	CSPª	SCY-078 ^b	CSPb	SCY-078c	MCF ^c	SCY-078 ^d	MCFd	SCY-078 ^e	MCF ^e	SCY-078 ^f	CSPf
Candida spp.	N MIC ₅₀ MIC ₉₀											
Albicans	29 0.125 1	29 0.125 2	69 0.125 0.25	69 0.03 0.25	33 0.06 0.125	33 ≤0.015 0.03	NA	NA	55 0.03 0.06	55 <0.007 0.007	30 0.125 0.125	30 0.03 0.06
Glabrata	29 0.5 2	29 0.125 16	67 0.5 4	67 0.06 2	23 0.25 1	23 ≤0.015 ≤0.015	137 0.5 1	137 0.03 0.03	33 0.125 0.5	33 <0.007 0.125	30 0.25 0.25	30 0.06 0.06
Parapsilosis	15 0.25 0.5	15 0.5 0.5	43 0.5 1	43 0.5 1	19 0.25 0.25	19 1 2	NA	NA	32 0.25 0.25	32 0.5 1	31 0.25 0.5	31 0.5 1
Tropicalis	21 0.25 1	21 0.06 1	31 0.25 0.5	31 0.03 0.03	12 0.125 0.25	12 ≤0.015 0.06	NA	NA	8 0.03 0.25	8 <0.007- 2	50 0.25 0.25	50 0.03 0.06
Krusei	19 0.5 2	19 0.125 1	34 1 2	34 0.125 0.25	6 0.5 - 4	6 0.03- 0.25	NA	NA	12 0.5 1	12 0.06 0.25	30 0.5 0.5	30 0.125 0.125


^a Pfaller et.al., AAC 2013, ^b Pfaller et.al., AAC 2017; ^c Schell et.al., AAC 2017, ^d Borroto-Esoda et.al., ICAAC 2016, ^e Marcos-Zambrano et.al., JAC and ^f Personal communications, EUROFINS

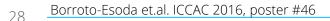
SCY-078 – In vitro Activity vs FLU-R *Candida* spp



SCY-078 demonstrated potent *in vitro* antifungal activity against 93% of the azoleresistant Candida spp tested

26

SCY-078 – In vitro Activity vs ECH-R Candida spp



SCY-078 demonstrated superior *in vitro* activity as compared to CASP and MICA against *C. glabrata* isolates with *fks* mutations

SCY-078 – In vitro Activity vs Multi-Drug Resistant (MDR) *Candida* spp

The majority of MDR *C. albicans* and *C. glabrata* clinical isolates remained sensitive to inhibition by SCY-078 with MIC values $\leq 1 \mu g/mL$

