

Disclosure

Full time employee of ProMIS Neurosciences

Designing an optimal amyloid-beta vaccine

- A vaccination strategy, as opposed to passive immunization with a therapeutic antibody, presents several advantages:
 - Small number of doses vs chronic administration
 - Sustained, long term anti-disease activity
 - · Ease of use in prevention setting in conjunction with diagnostic/predictive biomarkers
- A first generation vaccine from Elan consisting of aggregated human Aβ₁₋₄₂ + QS1 adjuvant induced antibody production but elicited meningoencephalitis and had to be discontinued for safety
- Lesson learned: T helper epitopes in the Aβ vaccine gave rise rise to a pro-inflammatory Th1-type response against the same Aβ epitopes in the brain
- ProMIS approach:
 - Vaccine to contain Aβ B cell epitopes only, no Aβ T helper epitopes
 - T helper epitopes provided by a carrier protein (KLH) not expressed in the brain

Potential of the ProMIS platform for vaccine application

- Using computational modeling, ProMIS has identified conformational epitopes that are exposed on misfolded, toxic Aβ oligomers (AβO) and not monomers or plaque
 - Antibodies raised against these conformational epitopes have demonstrated selectivity and protective activity against toxic AβO¹⁻³
 - Monoclonal antibody PMN310 currently in IND-enabling studies for Alzheimer's disease (passive immunization)
- Advantages of an oligomer-selective vaccine vs pan-Aβ approach
 - Antibodies elicited are capable of neutralizing and clearing toxic AβO
 - Maximizes the dose of antibody reaching the CNS -> No binding of antibodies to monomers in the blood
 - Once inside the CNS, oligomer-selective antibodies focus the entire dose on toxic oligomers -> No wasted binding to plaque or monomers
- Peptide-based vaccine tested in collaboration with VIDO Vaccine and Infectious Disease Organization, University
 of Saskatchewan, Canada

First generation Aβ vaccine (Elan)

- Aβ B cell epitopes -> Non-selective antibody response to all forms of AB
- Aβ T helper epitopes -> Th1-driven meningoencephalitis upon recognition of epitope in the brain

Note: T helper epitopes are presented on the surface of antigen-presenting cells in association with MHC Class II after uptake and processing of the vaccine. B cell epitopes in the vaccine are presented directly to B cells.

Second generation ProMIS Aβ vaccine

Aβ conformational B cell epitope -> Antibody response selective for toxic Aβ oligomers

No Aβ Th epitopes – KLH T helper epitopes not present in the brain, no meningoencephalitis

Vaccination with AβO conformational peptide epitope 301 conjugated to KLH and formulated with different adjuvants elicits a robust antibody response (ELISA)

Vaccination with different adjuvants elicits both IgG1 and IgG2a antibodies against the conformational peptide epitope (ELISA)

- All adjuvants induce both IgG1 and IgG2a antibody responses to the AβO conformational epitope
- Responses are skewed toward production of IgG1 antibodies (Th2-driven) vs IgG2a antibodies (Th1-driven) with alum and TriAdj
- SWE and Emulsigen D produce more comparable levels of IgG1 and IgG2a

The KLH carrier elicits both Th1 (IFN- γ) and Th2 (IL-5) helper cytokines (ELISPOT) – Source of T cell help

The production of T helper cytokines in response to KLH stimulation confirms that KLH provides effective Th cell epitopes to support the anti-AβO peptide antibody response

The conformational peptide epitope does not elicit Th cell cytokines (ELISPOT) – No detrimental inflammatory T cell response to $A\beta$

The lack of T helper cytokine production in response to stimulation with 301 conformational peptide confirms that the peptide does not contain Th cell epitope(s), only a B cell epitope

Antibodies induced by vaccination are selective for $A\beta$ oligomers vs monomers (SPR)

Greater SPR binding response of immune sera to Aß oligomers vs monomers with all adjuvants tested

Antibodies induced by vaccination do not bind plaque in AD brain -> Oligomer-selective antibody response with all adjuvants tested

- 20X magnification
- No signal on normal, control brains

Summary

- Initial results show robust induction of antibodies to conformational 301 peptide conjugated to KLH in the presence of various adjuvants, including alum approved for human use
- No potentially deleterious T helper responses to the 301 peptide epitope were detected. As expected, T helper responses developed against the carrier (KLH)
- The serum antibodies elicited are selective for AβO with little or no binding to monomers or plaque
- Immunization with a vaccine consisting of a conformational AβO B cell epitope conjugated to a carrier protein (KLH) appears to exhibit the desired characteristics
 - Strong antibody response to Aβ with no measurable pro-inflammatory T cell response to Aβ
 - Oligomer selectivity of the antibodies most efficiently focuses the response on the pathogenic species of Aβ and potentially reduces the risk of ARIA side-effects associated with binding to plaque and vascular deposits

Acknowledgments

University of British Columbia

Neil Cashman Ebrima Gibbs Juliane Coutts Cheryl Wellington

Vaccine and Infectious Disease Organization, University of Saskatchewan

Scott Napper Erin Scruten

