

Bio-Techne Launches Simple Plex Ultra-Sensitive Assays on Ella Platform to Enable Femtogram-Level Detection of Neurological Biomarkers

- Detects low-abundance proteins in blood at femtogram concentrations for earlier disease insights
- Supports research in Alzheimer's, ALS, MS, Parkinson's Disease, and Traumatic Brain Injury with validated biomarkers
- Automated immunoassay workflow reduces variability; total runtime is under three hours

MINNEAPOLIS, Jan. 28, 2026 /PRNewswire/ -- Bio-Techne Corporation (NASDAQ: TECH), a global provider of life science tools, reagents, and diagnostic products, today announced the launch of [Simple Plex Ultra-Sensitive Assays](#) on the Ella automated benchtop platform.

Early detection of neurodegenerative disease biomarkers has historically been limited by their extremely low abundance in accessible biofluids such as blood. The new, ultrasensitive assays overcome this barrier by delivering step-change improvements on the Ella platform in analytical sensitivity and reliable quantification of key biomarkers, including NFL, GFAP, pTau 217, and Amyloid β (aa1-42).

This capability enables researchers to detect subtle, early biological changes that are often missed, accelerating insights into disease onset, progression, and treatment response. The assays build on Ella's proven performance, which is cited in more than 200 peer-reviewed neurology-focused publications and widely adopted in translational and clinical research, driving breakthrough diagnostic and therapeutic advances.

"The introduction of Simple Plex Ultra-Sensitive assays on Ella significantly advances the analytical capabilities available for neurodegenerative disease research. By combining femtogram-level detection with a fully automated microfluidic platform, Ella enables precise quantification of low-abundance biomarkers that are often undetectable with conventional immunoassay methods," said Will Geist, President of Bio-Techne's Protein Sciences Segment. "This enhanced sensitivity and reproducibility support earlier characterization of disease-related changes and strengthen the reliability of high-throughput studies aimed at defining disease trajectories and identifying novel therapeutic targets."

Ella's automated workflow reduces manual steps and variability, delivering ultrasensitive assay results with an overall runtime of under three hours. These assays are intended for Research Use Only.

This launch strengthens Bio-Techne's immunoassay leadership by combining ultrasensitive proteomic assays with automated instrumentation that improves reproducibility, throughput,

and data quality. The Ella platform has been cited in more than 1,000 peer-reviewed publications. Bio-Techne's broad proteomic and spatial biology portfolio continues to drive breakthroughs in neuroscience research and advance precision medicine. For more information, visit www.bio-techne.com/ultrasensitive

About Bio-Techne

Bio-Techne Corporation (NASDAQ: TECH) is a global life sciences company providing innovative tools and bioactive reagents for the research and clinical diagnostic communities. With hundreds of thousands of products in its portfolio, Bio-Techne generated over \$1.2 billion in net sales in fiscal 2025 and has approximately 3,100 employees worldwide. For more information on Bio-Techne and its brands, please visit www.biotechne.com and follow the Company on [LinkedIn](#), [YouTube](#), and [X](#)

Media Contacts

Corporate Communications
media.relations@biotechne.com

David Clair
Vice President, Investor Relations & Corporate Development
david.clair@biotechne.com

View original content to download multimedia <https://www.prnewswire.com/news-releases/bio-techne-launches-simple-plex-ultra-sensitive-assays-on-ella-platform-to-enable-femogram-level-detection-of-neurological-biomarkers-302672022.html>

SOURCE Bio-Techne Corporation