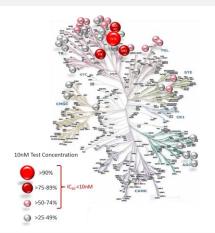
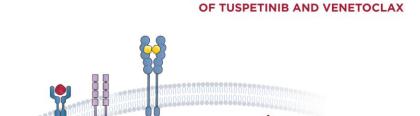
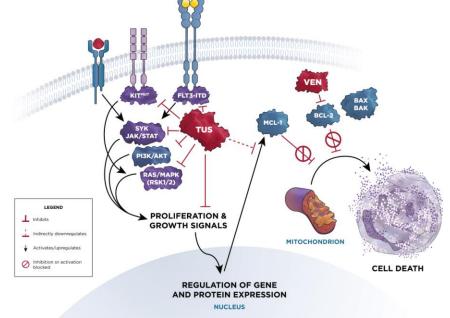


Tuspetinib Oral Myeloid Kinase Inhibitor Safety and Efficacy As Monotherapy and Combined with Venetoclax in Phase 1/2 Trial of Patients with Relapsed or Refractory (R/R) Acute Myeloid Leukemia (AML)

<u>Naval Daver</u>¹, Kyoo-Hyun Lee², Yunsuk Choi², Brian A. Jonas³, Martha Arellano⁴, Justin M Watts⁵, Pau Montesinos⁶, Uma Borate⁷, Paul B. Koller⁸, Chul-Won Jung⁹, Sang Kyun Sohn¹⁰, Pankit Vachhani¹¹, Amir T. Fathi¹², Sung-Soo Yoon¹³, Jeong-Ok Lee¹⁴, Ho-Jin Shin¹⁵, Gabriel Mannis¹⁶, Nikolai A. Podoltsev¹⁷, Shuhying Tan ¹⁸, Harry P. Erba¹⁹, Eric Tam²⁰, Mar Tormo Diaz²¹, Jia Hu²², Ranjeet Kumar Sinha²², Nawazish Khan²², William Rice²², Rafael Bejar²²


¹The University of Texas MD Anderson Cancer Center Houston, TX, ²Asan Medical Center, Seoul, SK, ³UC Davis Comprehensive Cancer Center, Sacramento, CA, ⁴Emory University, Atlanta, GA, ⁵University of Miami, FL, ⁶Hospital Universitari i Politècnic La Fe, Valencia, ESP, ⁷The James Cancer Hospital and Solowe Research Institute, The Ohio State University, OH, ⁸Department of Hematology/HCT, City of Hope, Duarte, CA, ⁸Samsung Medical Center, Seoul, SK, ¹⁹Kyungpook National University Hospital Daegu, SK, ¹¹University of Alabama at Birmingham, AL, ¹²Massachusetts General Hospital Boston, MA, ¹³Seoul National University Hospital, Seoul, SK, ¹⁴ Seoul National University Bundang Hospital, Seongnam, SK, ¹⁵Pusan National University Hospital, Busan, SK, ¹⁵Stanford Cancer Center, Stanford, Palo Alto, ¹⁷Yale School of Medicine, New Haven, CT, ¹⁸St. Vincent's Hospital, Melbourne, AUS, ¹⁹Duke Cancer Institute, Durham, NC, ²⁰ USC Norris Comprehensive Cancer Center, Los Angeles, CA, ²¹ University Clinical Hospital, INCLIVA Research Institute, Valencia, ESP ²²Aptose Biosciences Inc, San Diego, CA


December 09, 2023


Tuspetinib (TUS) Targets AML Oncogenic Signaling and Venetoclax Resistance Mechanisms

Multi-kinase inhibitor suppresses

- SYK, FLT3^{MUT/WT}, KIT^{MUT} (not KIT-WT)
- JAK1/2 in the JAK/STAT pathway
- RSK2 in the RAS/MAPK pathway
- **MCL1** expression (indirect suppression)

RATIONALE FOR THE COMBINATION

Tuspetinib Single Agent Phase 1/2 Study in R/R AML

- TUS is dosed orally once daily in 28day cycles without interruption
- Safety and efficacy analyses include all dosed patients¹
- CR_c = CR + CR_h + CR_p + CR_i (incl MLFS)
- 91 patients dosed with TUS single agent
- Therapeutic window 80 160 mg
- RP2D = 80 mg once daily

Dose Escalation + Exploration + Expansion			
	Total n	VEN- Naïve n	Prior- VEN ² n
ohort 1: 20 mg QD	2	1	1
Cohort 2: 40 mg QD	17	8	9
ohort 3:80 mg QD	20	14	6
ohort 4: 120 mg QD	32	6	26
Cohort 5: 160 mg QD	16	8	8
Cohort 6: 200 mg QD	4	1	3

²Proportion of Prior-VEN patients increased over time

¹Data cut Oct 23, 2023

Tuspetinib Single Agent Baseline Characteristics: Representative of Current R/R AML Patient Population

Patient Characteristics (n=91)	FLT3 ^{MUT}	FLT3 ^{WT}
Patient number ¹	n=34	n=56
Age Years, Median (Range)	60 (21-84)	65.5 (18-83)
Female, n (%)	14 (41.2%)	24 (42.9%)
Lines prior therapy, Mean (Range)	3.3 (1-11)	2.4 (1-6)
Prior-VEN	19 (55.9%)	33 (58.9%)
Prior FLT3 Inhibitor	17 (50.0%)	3 (5.4%)
Prior Cytotoxic chemotherapy	26 (76.5%)	36 (64.3%)
Prior HMAs	22 (64.7%)	37 (66.1%)
Prior HSCT	14 (41.2%)	19 (33.9%)

¹One patient had an indeterminant status for FLT3

Tuspetinib Single Agent Well Tolerated

No treatment related QT_c prolongation, CPK elevations, differentiation syndrome, non-hematologic SAEs, or deaths

All TEAEs (n=91)	n (%)
Any	87 (95.6%)
Most Frequent TEAEs (>12% of patients)	
Pneumonia	30 (33.0%)
Nausea	18 (19.8%)
Diarrhea	17 (18.7%)
Pyrexia	17 (18.7%)
Alanine aminotransferase increased	13 (14.3%)
Hypokalaemia	12 (13.2%)
Epistaxis	11 (12.1%)
Decreased appetite	11 (12.1%)
Febrile neutropenia	11 (12.1%)
≥ Grade 3	66 (72.5%)
SAEs	52 (57.1%)
Leading to treatment termination	12 (13.2%)
Leading to death	18 (19.8%)

Treatment Related AEs (n=91)	n (%)
Any	29 (31.9%)
Most Frequent Related TEAEs (>10% of patients)	
Diarrhea	10 (11.0%)
Grade ≥ 3 (N≥2 patients)	9 (9.9%)
Neutrophil count decreased	2 (2.2%)
White blood cell count decreased	2 (2.2%)
Muscle weakness	2 (2.2%)
SAEs	1 (1.1%)
Leading to death	0 (0.0%)
Dose Limiting Toxicity (DLT)	1 (1.1%)

^{*} DLT of muscle weakness occurred at the 200mg dose level in a study participant with high drug exposure.

No CPK elevation. No CNS abnormality.

Tuspetinib Single Agent at Therapeutic Doses (**80-160 mg, n=68**): More Active in VEN-Naive R/R AML Patients

TUS Response Rate Analysis (ITT)

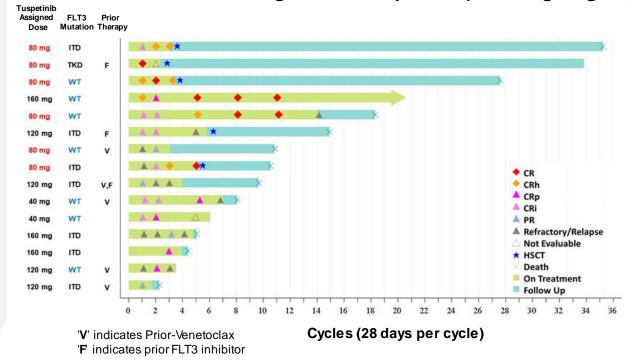
TUS active in FLT3WT and FLT3MUT AML

TUS CR_c in VEN-Naïve AML (80-160mg)

- **29% CR**_c in all patients (n=8/28)
- **42% CR**_c in FLT3^{MUT} (n=5/12)
- **19% CR**_c in FLT3^{WT} (n=3/16)

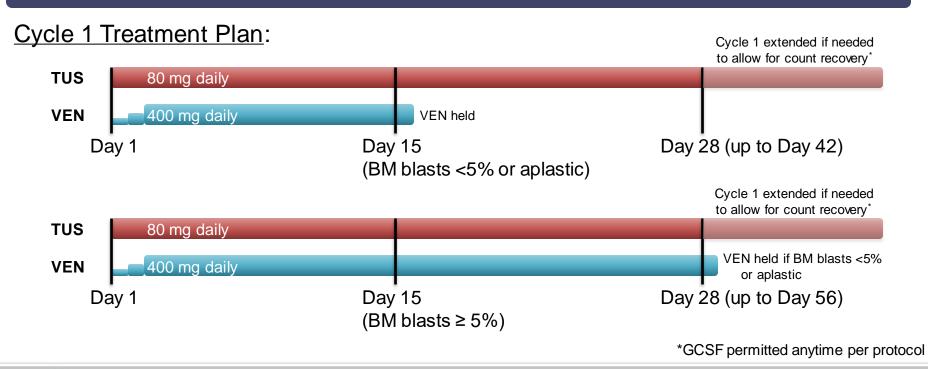
TUS CR/CR_h in VEN-Naïve AML at 80 mg RP2D:

- 36% CR/CR_h in all patients (n=5/14)
 - 50% CR/CR_h in FLT3^{MUT} (n=3/6)
 - 25% CR/CR_h in FLT3^{WT} (n=2/8)


Composite Complete Remission (CR _c)		
Subgroups	% CR _c (n=68)	
Overall	13% (9/68)	
VEN Naïve	29% (8/28)	
Prior VEN	3% (1/40)	
FLT3-Mutated	18% (5/28)	
VEN Naïve	42% (5/12)	
Prior VEN	0% (0/16)	
Prior FLT3i	14% (2/14)	
FLT3-Unmutated (WT)	10% (4/39)	
VEN Naïve	19% (3/16)	
Prior VEN	4% (1/23)	

TUS Single Agent Efficacy: Clinical Responses

TUS Responder Analysis


- Responses in FLT3^{WT} and FLT3^{MUT} (ITD and TKD) AML
- Responses and blood counts improve with continuous dosing
- Many bridged to allogeneic transplant (HSCT ★)
- Durability observed when HSCT not performed
- 80 mg selected as RP2D

Patients Achieving Clinical Responses (TUS Single Agent)

TUS/VEN Phase 1/2 Global Study (APTIVATE Trial Ongoing)

<u>Tuspetinib (80 mg) + Venetoclax (400 mg) Doublet Study</u> (n=49 patients dosed as of Oct 23, 2023) (n=36 evaluable, 32 ongoing)

TUS/VEN Patient Baseline Characteristics: Older Heavily Prior-VEN and Prior FLT3i Exposed

Patient Characteristics (n=49)	FLT3 ^{MUT}	FLT3 ^{WT}
Patient number ^{1,2}	n=13	n=32
Age Years, Median (Range)	74 (39-84)	68 (31-81)
Female, n (%)	7 (53.8%)	15 (46.9%)
Prior lines of therapy, Mean (Range)	2.9 (1-5)	2.4 (1-7)
Prior-VEN	11 (84.6%)	21 (65.6%)
Prior FLT3 Inhibitor	11 (84.6%)	3 (9.4%)
Prior Cytotoxic chemotherapy	7 (53.8%)	20 (62.5%)
Prior HMAs	10 (76.9%)	21 (65.6%)
Prior HSCT	4 (30.8%)	7 (21.9%)

¹Four patients had an indeterminant status for FLT3

²Data cut Oct 23, 2023

TUS/VEN Safety: Favorable Tolerability Profile

All TEAEs (n=49) ¹	TUS/VEN n (%)
Any	41 (83.7%)
Most Frequent TEAEs (≥10% of patients)	
Febrile neutropenia	12 (24.5%)
Nausea	11 (22.4%)
Diarrhoea	6 (12.2%)
Hypokalaemia	6 (12.2%)
Fatigue	6 (12.2%)
Anaemia	5 (10.2%)
Platelet count decreased	5 (10.2%)
White blood cell count decreased	5 (10.2%)
≥ Grade 3	31 (63.3%)
SAEs	26 (53.1%)
Leading to treatment termination	1 (2%)
Leading to death	2 (4.1%)

Treatment Related AEs (n=49)	TUS/VEN n (%)		
,	Related to TUS	Related to VEN	
Any	24 (49.0%)	22 (44.9%)	
Most Frequent Related TEAEs			
(≥10% of patients)			
Nausea	8 (16.3%)	4 (8.2%)	
Grade ≥ 3 (N ≥2 patients)	16 (32.7%)	15 (30.6%)	
Neutrophil count decreased	3 (6.1%)	3 (6.1%)	
Febrile neutropenia	3 (6.1%)	2 (4.1%)	
Platelet count decreased	2 (4.1%)	3 (6.1%)	
White blood cell count decreased	2 (4.1%)	2 (4.1%)	
Fatigue	2 (4.1%)	2 (4.1%)	
SAEs	7 (14.3%)	7 (14.3%)	
Leading to death	0 (0%)	0 (0%)	

¹Data cut Oct 23, 2023

TUS/VEN Active in Both VEN-Naïve and Prior-VEN R/R AML: Evaluable Patient Population (APTIVATE Ongoing), N=49

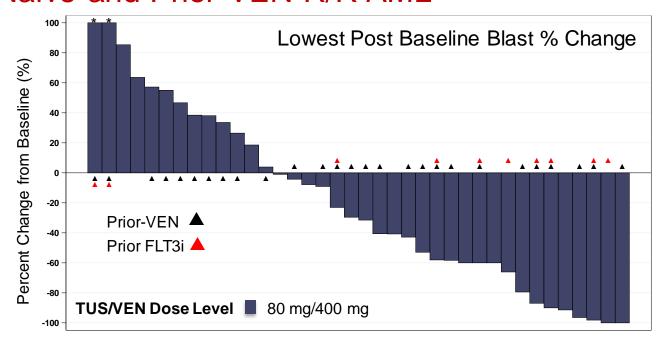
Key Findings

- TUS/VEN is active across broad populations of R/R AML
- TUS/VEN is active in FLT3^{WT}, representing ~70% of AML patients
- TUS/VEN has activity in difficult-to-treat Prior-VEN AML population

Composite Complete Remission (CRc) in Evaluable Patients ¹				
FLT3 Status	ALL	VEN-Naïve	VEN-Prior	FLT3i-Prior
ALL	25% (9/36)	43% (3/7)	21% (6/29)	
FLT3 ^{WT}	20% (5/25)	33% (2/6)	16% (3/19)	
FLT3 ^{MUT}	36% (4/11)	100% (1/1)	30% (3/10)	44% (4/9)

¹Data cut Oct 23, 2023

Patient Status


49: Patients dosed with TUS/VEN

36: Evaluable patients who completed C1 or discontinued prior to C1

13: Too early to assess (in C1 and still

on study)

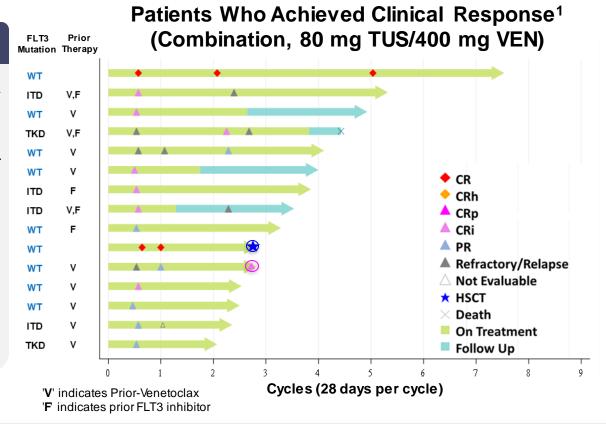
TUS/VEN: Bone Marrow Blast Decreases Achieved in Both VEN-Naïve and Prior-VEN R/R AML

Blast percent change was calculated as 100 X (the lowest post-baseline bone marrow blast - baseline bone marrow blast)/baseline bone marrow blast.

Only patients who reported both baseline and any post-baseline bone marrow blast results are included in the figure.

Red triangle indicates patients who received prior FLT3 inhibitors before starting tuspetinib, including gilteritinib, midostaurin, and/or sorafenib

Data cut Oct 23, 2023


^{*}Patients with blast percent change >/=100% are shown as 100%.

TUS/VEN Treats Both VEN-Naïve and Prior-VEN R/R AML

TUS/VEN Responder Analysis

- Responses in heavily pretreated R/R AML Patients
- Responses in FLT3WT & FLT3MUT AML
- Notable responses in difficult-totreat Prior-VEN (V) failure AML
- Most patients achieving a response remain on treatment
- Responses beginning to mature and bridge to HSCT

CONCLUSIONS

- TUS single agent is well tolerated and more active in VEN-naïve R/R AML
 - TUS is active in FLT3^{WT} AML and FLT3^{MUT} AML with prior FLT3i
 - TUS RP2D 80mg: Overall $CR/CR_h=36\%$ | $FLT3^{MUT}CR/CR_h=50\%$ | $FLT3^{WT}CR/CR_h=25\%$
- TUS/VEN doublet is well tolerated and active in broad populations of R/R AML
 - TUS/VEN is active in FLT3^{WT} AML and FLT3^{MUT} AML with prior FLT3i
 - TUS directly and indirectly targets VEN-resistance mechanisms
 - TUS/VEN is active in VEN-Naïve and Prior-VEN R/R AML
- TUS/VEN may provide an important opportunity to treat Prior-VEN AML, including both FLT3^{MUT} and FLT3^{WT} AML in the R/R setting
- TUS/VEN/HMA triplet will be studied in 1L newly diagnosed FLT3^{MUT} and FLT3^{WT} AML patients ineligible for induction chemotherapy

Data cut Oct 23, 2023

Acknowledgements

We are grateful to the clinical trial team, investigators, staff, and most of all, to the patients and their families for their participation in this study, and for their dedication to improving the lives of patients with AML

