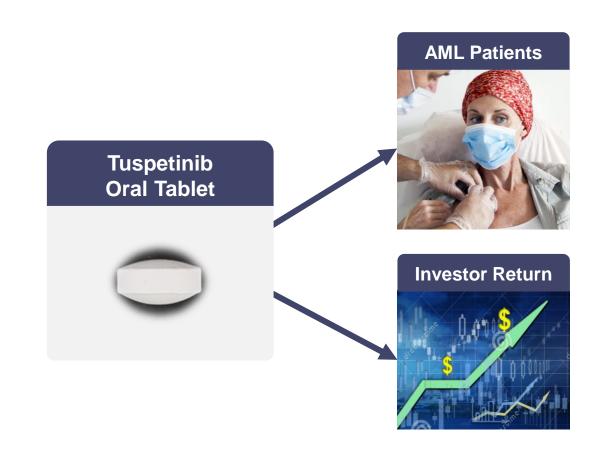


Aptose Disclosure

This presentation does not, and is not intended to, constitute or form part of, and should not be construed as, an offer or invitation for the sale or purchase of, or a solicitation of an offer to purchase, subscribe for or otherwise acquire, any securities, businesses and/or assets of any entity, nor shall it or any part of it be relied upon in connection with or act as any inducement to enter into any contract or commitment or investment decision whatsoever.


This presentation contains forward-looking statements, which reflect APTOSE Biosciences Inc.'s (the "Company") current expectations, estimates and projections regarding future events, including statements relating to our business strategy, our clinical development plans, our ability to obtain the substantial capital we require, our plans to secure strategic partnerships and to build our pipeline, our clinical trials and their projected timeline, the efficacy and toxicity of our product candidates, potential new intellectual property, our plans, objectives, expectations and intentions; and other statements including words such as "anticipate", "contemplate", "continue", "believe", "plan", "estimate", "expect", "intend", "will", "should", "may", and other similar expressions. Such statements constitute forward-looking statements within the meaning of securities laws.

Although the Company believes that the views reflected in these forward-looking statements are reasonable, such statements involve significant risks and uncertainties, and undue reliance should not be placed on such statements. Certain material factors or assumptions are applied in making these forward-looking statements, and actual results may differ materially from those statements. Those factors and risks include, but are not limited to, our ability to raise the funds necessary to continue our operations, changing market conditions, the successful and timely completion of our clinical studies including delays, the demonstration of safety and efficacy of our drug candidates, our ability to recruit patients, the establishment and maintenance of corporate alliances, the market potential of our product candidates, the impact of competitive products and pricing, new product development, changes in laws and regulations, uncertainties related to the regulatory approval process and other risks detailed from time to time in the Company's ongoing quarterly filings and annual reports.

Forward-looking statements contained in this document represent views only as of the date hereof and are presented for the purpose of assisting potential investors in understanding the Company's business and may not be appropriate for other purposes. The Company does not undertake to update any forward-looking statements, whether written or oral, that may be made from time to time by or on its behalf, except as required under applicable securities legislation. Investors should read the Company's continuous disclosure documents available at www.sedar.com and EDGAR at www.sedar.com and EDGAR at www.sedar.shtml, especially the risk factors detailed therein.

Aptose is a precision oncology company developing oral targeted agents to treat hematologic malignancies

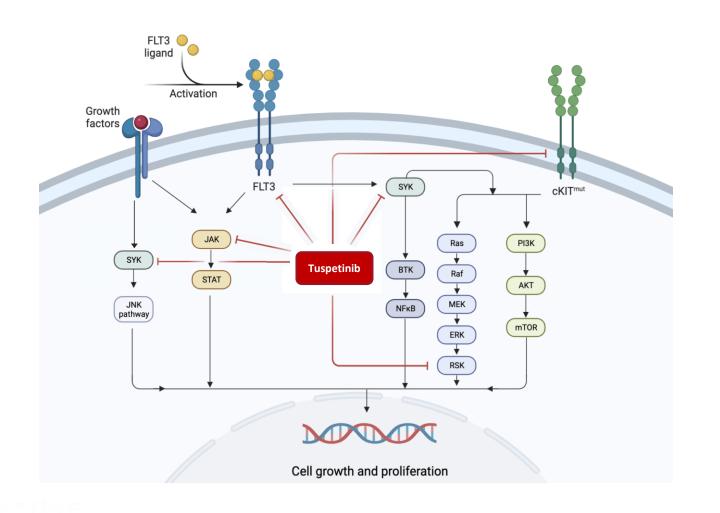
Aptose is a precision oncology company developing oral targeted agents to treat hematologic malignancies

Aptose Investment Highlights

Tuspetinib (Tus) myeloid kinase inhibitor: safe and effective, once daily, oral agent to treat AML

- CRs across 4 dose levels with no DLT
- Favorable safety and non-myelosuppressive
- Broadly active across diverse AML populations
- Accelerated approval paths as monoRx and doublet
- Ideal for 1L triplet therapy and maintenance therapy
- Orphan Drug and Fast Track Status
- \$1B+ market potential

Luxeptinib (Lux) lymphoid & myeloid kinase inhibitor


- Clinically active in AML and B-cell cancers
- Exploring new formulation with improved absorption

Value-driving near-term clinical milestones during 2023

Tuspetinib simultaneously targets clinically validated kinases in oncogenic signaling pathways in AML

Avoids the need to fully suppress any single target – Avoids typical toxicities of other agents

Multi-drug therapy in a single tablet

- Uniquely and potently targets FLT3, SYK,
 JAK1/2, cKIT^{MUT}, and RSK
- Suppresses multiple dysregulated signal transduction pathways that drive AML proliferation and resistance
- Ideal for monotherapy, combination therapy, and maintenance therapy

Building a long-term strategy for tuspetinib blockbuster potential

Addresses multiple AML patient populations and commercial opportunities

Monotherapy in Prior FLT Inhibitor Failures

Potential for Accelerated Approval in r/r AML

Doublet Combination in 2L AML

Potential for Accelerated Approval with Interim Data Analysis

Triplet Combination for 1L AML

Maintenance Therapy Post-CR

Potential Annual Sales ≥ \$1B

Near Term

Long Term

Tuspetinib blockbuster potential

- Delivers potent single agent CRs among refractory AML regardless of adverse mutation status
- CRs among wildtype FLT3 patients, representing 70% of AML population
- Avoids typical toxicities of other kinase inhibitors, including myelosuppression
- Paths identified for accelerated approval
- Ideal for oral maintenance & combination therapy representing significant markets

Tuspetinib monotherapy in r/r AML who failed prior FLT3i Accelerated approval path with fast-to-market opportunity

FLT3^{mut} AML failed prior FLT3 inhibitors
(3L+ r/r AML population with no approved options):

Gilteritinib (Xospata®) FY 2022E sales: ~\$355M*

Midostaurin (Rydapt®)

Sorafenib (Nexavar®)

Quizartinib

Tuspetinib Monotherapy

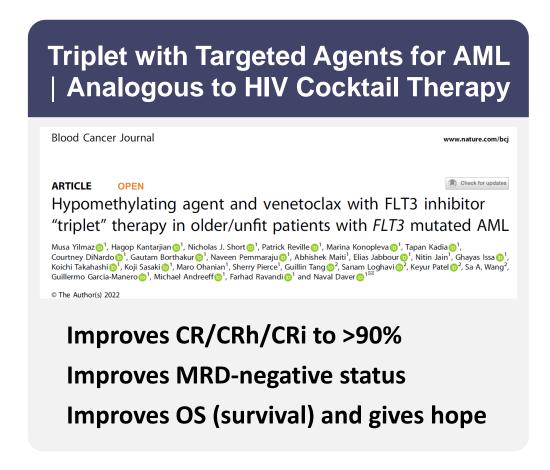
- Active against all forms FLT3 & other targets
- Responses in patients who failed prior FLT3i
- Potential to address an unmet medical need
- Fast-to-market strategy in US

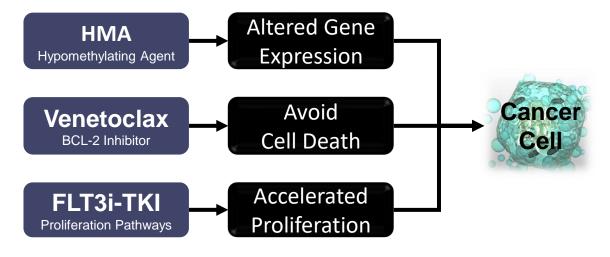
Accelerated development strategy may offer more rapid value creation

Tuspetinib doublet therapy in 2L AML Accelerated approval opportunity with large commercial potential

2L AML failed all 1L agents (all comer):

- Failed chemotherapy
- Failed 1L HMA + Ven
- Failed 1L FLT3 inhibitor


Tuspetinib + venetoclax doublet therapy


- Active in AML with FLT3^{MUT}
- Active in larger AML population with FLT3^{WT}
- Potential to address an unmet medical need
- Potential for interim analysis and early approval
- Option for confirmatory regulatory strategy in US

Accelerated development strategy may offer more rapid value creation

New era of triplet therapy with targeted agents for 1L AML creates a significant commercial opportunity for tuspetinib

Tuspetinib for triplet therapy in 1L AML due to favorable safety profile Large commercial opportunity

Current triplet: HMA + Venetoclax + FLT3i

HMA: Hypomethylating agent

Venetoclax: BCL-2 inhibitor (2022 sales: \$2.9B)*

FLT3i: Current FLT3 inhibitors

Problems with current triplet: HMA + Venetoclax + FLT3i-TKI

Safety issue with QTc prolongation

Prolonged myelosuppression

Limited breadth of antileukemic activity

Ideal triplet: HMA + Venetoclax + Tuspetinib

HMA: Hypomethylating agent

Venetoclax: BCL-2 inhibitor

Tuspetinib: Myeloid kinase inhibitor

Solution for ideal triplet: HMA + Venetoclax + Tuspetinib

No observed cardiotoxicity

No observed differentiation syndrome

No myelosuppressive with continuous dosing

Active on FLT3^{MUT} and FLT3^{WT}

Tuspetinib maintenance therapy post-CR Large commercial opportunity

Patients who achieve a CR

- CR post-Tus Monotherapy
- CR post-Tus triplet Therapy
- CR post-Chemotherapy
- CR post-HSCT

Tuspetinib maintenance therapy

- Tus monotherapy or Tus|Ven or Tus|HMA
- Applicable to larger FLT3^{WR or MUT} AML populations
- Maintain patients long term MRD-negative CR
- Extend disease free state and survival

Maintenance strategy may offer significant long-term value creation

Pathway to commercialization: global APTIVATE dose expansion trial ongoing to support registrational studies for accelerated approval

✓ Dosing Completed

Phase 1/2 trial tuspetinib single agent

Part A: Dose Escalation:

- 6 cohorts: 20mg to 200mg
- N=18 dosed

Part B: Dose Exploration:

- 4 cohorts: 40, 80, 120, 160mg
- N=42+ dosed
- No dose-limiting toxicities
- Mutation agnostic responses

Dosing Ongoing

Phase 1/2 <u>APTIVATE</u> expansion trial

Tuspetinib Monotherapy

- FLT3-mutated cohort:
 - Enrich Prior FLT3i
- FLT3-unmutated cohort
 - Enrich TP53^{MUT} / complex karyotype

Doublet Combination of Tuspetinib + Venetoclax

FLT3-mutated/FLT3-unmutated

Triplet Combo Pilot Study

- Planned 2H2023
- 1L All comers: Tus | Ven | HMA

Dosing Planned

Registrational Trials

Registrational Phase 2: monotherapy

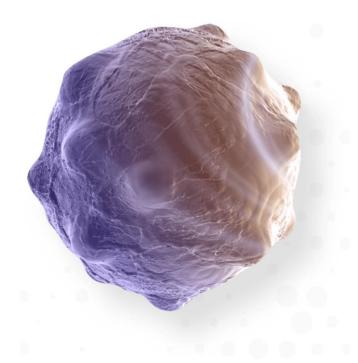
• FLT3^{MUT} r/r AML (prior FLT3i therapy)

Registrational Phase 2: monotherapy

TP53^{MUT} or NPM1^{MUT} r/r AML

Doublet Phase 2 randomized study

- 2L AML, FLT3^{MUT}: Tus | Ven vs. Gilt
- 2L AML, FLT3WT : Tus Ven vs. Chemo


Triplet Phase 2/3 randomized study

- 1L unfit AML: Tus | Ven | HMA + Maint vs. HMA | Ven
- 1L fit AML, FLT3WT: Tus | Chemo + Maint vs. Chemo

Paths for US
Accelerated
Approvals and
Global
Marketing

Paths for Full Approval and Maximizing Commercial Value

Initial Results from the Tuspetinib Phase 1/2 Clinical Trial

Relapsed or Refractory AML

Tuspetinib Phase 1/2 Study in r/r AML: Dose Escalation & Dose Exploration Completed

Dose Escalation 18 patients dosed

Dose Exploration 42 patients dosed

Cohort 1: 20 mg QD	√ Completed	
Cohort 2: 40 mg QD	√ Completed	
Cohort 3: 80 mg QD	√ Completed	1
Cohort 4: 120 mg QD	√ Completed	1
Cohort 5: 160 mg QD	✓ Completed	

40 mg QD	CRS No DLT	Dosing
80 mg QD	CRS No DLT	✓ Completed
120 mg QD	CRS No DLT	✓ Completed
160 mg QD	CRS No DLT	✓ Completed

Favorable, non-myelosuppressive safety profile across six dose levels:

✓ Completed

No drug-related SAE or deaths

Cohort 6: 200 mg QD

- No drug-related QTc prolongation
- No DLT through 160 mg dose level
- Plasma t_{1/2} estimated at 40hrs

Dose escalation and dose exploration completed across six dose cohorts:

- Total patients dosed in Part A + Part B = 60
- Total evaluable for efficacy in Part A + Part B = 48
- Total evaluable for efficacy at 80/120/160mg = 42
- Additional patients being placed on 40mg dose level

Phase 1/2 dose escalation and exploration - patient characteristics

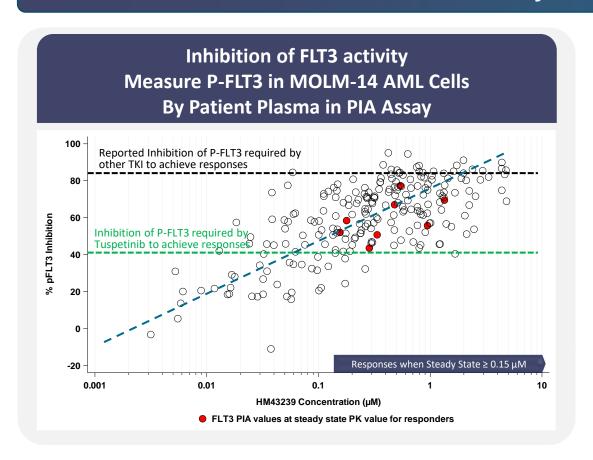
Patient Characteristics					
Demographic:	N=60 (%)				
Male	35 (58.3%)				
Race:					
Asian	32 (53.3%)				
White	22 (36.7%)				
Median age	61 (range: 18-83)				
FLT3 Mutation Status					
FLT3 ^{MUT}	26 (43.3%)				
FLT3 ^{WT}	33 (55.0%)				
Unknown	1 (1.7%)				
Prior Lines of AML Therapy - Mean (range)	2.7 (1 to 8)				
Type of Prior Therapy	N (%)				
Prior Drug Therapy (Chemotherapy/Not Radiation)	60 (100%)				
Cytotoxic Chemotherapy	43 (71.7%)				
НМА	36 (60.0%)				
Venetoclax	30 (50.0%)				
HSCT	17 (28.3%)				
FLT3 Inhibitor	14 (23.3%)				

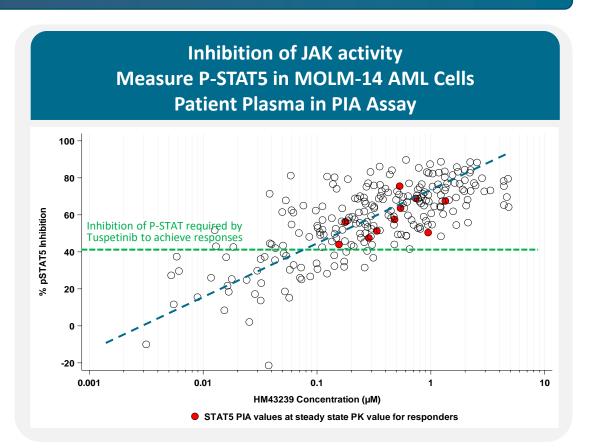
Dose escalation and exploration completed across six dose cohorts

- As of 10/6/22, 60 patients treated across 6 dose levels
- Patients heavily pre-treated
 - Cytotoxic chemotherapy (72%)
 - HMAs (60%)
 - Venetoclax (50%)
 - HSCT (28.3%)
- Half (50%) of FLT3^{MUT} patients failed prior FLT3 inhibitor

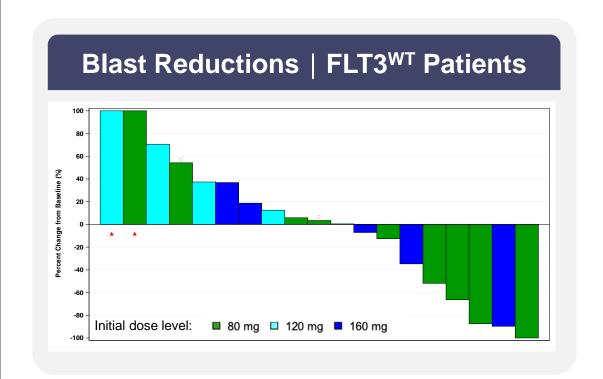
Tuspetinib favorable safety profile and broad therapeutic window

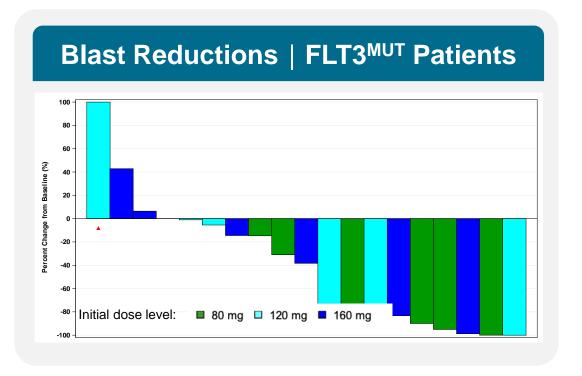
Favorable Safety Profile


- No drug-related myelosuppression
- No drug related AE of QTc prolongation
- No observed differentiation syndrome
- No drug related SAE, deaths, or discontinuations
- No DLT from 20 mg level through 160 mg level
- One DLT of muscle weakness at 200 mg
 - Reversibility in patient with high exposure
 - Not rhabdomyolysis | No muscle destruction
 - No AE of elevated creatine phosphokinase (CPK)
- Avoids many of the typical toxicities observed with other TKI and menin inhibitors

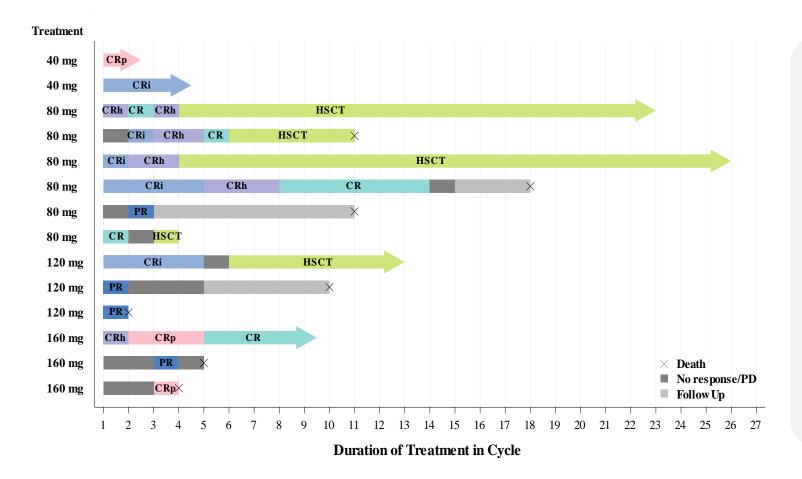

Treatment-emergent AEs (TEA Analysis Set, Parts A and B	
Patients Experiencing TEAEs	N (%)
Any	56 (93.3%)
Most Frequent TEAEs (>15% of patients)	
Pneumonia	18 (30.0%)
Pyrexia	12 (20.0%)
Nausea	11 (18.3%)
Diarrhea	9 (15.0%)
≥ Grade 3	41 (68.3%)
SAEs	31 (51.7%)
Leading to treatment discontinuation	6 (10.0%)
Leading to death	11 (18.3%)
Patients Experiencing TEAEs Related to HM43239	N (%)
Any	17 (28.3%)
Most Frequent Related TEAEs (>5% of patients)	
Diarrhea	7 (11.7%)
Nausea	5 (8.3%)
≥ Grade 3	6 (10.0%)
Decreased neutrophil count	2 (3.3%)
Muscle weakness	2 (3.3%)
Decreased white blood cell count	1 (1.7%)
Nausea	1 (1.7%)
Leukopenia	1 (1.7%)
SAEs	0 (0%)
Leading to death	0 (0%)
Dose Limiting Toxicity (DLT)*	1 (1.7%)

Tuspetinib in patient plasma inhibits multiple kinase targets Full inhibition of each target is not required


Lower doses needed for responses = fewer toxicities



Clinical activity: bone marrow blast reductions achieved across multiple dose levels in both FLT3^{WT} patients and FLT3^{MUT} patients



- Blast reductions observed in heavily pretreated r/r AML patients across multiple dose levels
- Several CR achieved with blast clearance accompanied by full recovery of normal blood cells
- Meaningful bone marrow blast reductions highlight the potential of tuspetinib to reach a CR when combined with hypomethylating agents, venetoclax, or other active therapies

R/R AML patients achieving clinical responses with tuspetinib monotherapy

Responder Analysis

Responses achieved across four dose levels

Responses mature over time with ongoing continuous dosing

Many bridged to potentially lifesaving transplant (HSCT)

Durability observed when no HSCT unavailable

'Indicates patients who received prior FLT3 inhibitors, including gilteritinib and/or midostaurin

Tuspetinib safely delivers monotherapy responses across diverse AML populations

Mutations present									
Pt.	FLT3 ^{MUT}	RAS	NPM1	DNMT3A	RUNX1	IDH	Other	Dose Level	Best Response
1							TP53	80mg	CR
2							TP53, TET2	40 mg	CRp
3	Χ	Χ					RUNX1	80mg	CRh
4		Х					U2AF1, BCOR, SETBP1	160mg	CR
5	Χ	Χ	X	Χ			PTPN11	120mg	PR
6	Χ		Х	Χ				80mg	CR
7	Χ		Χ					160mg	CRp
8	Χ		Х	Χ		X		160mg	PR
9						X	SRSF2	80mg	CR
10	Χ				Χ		SF3B1, RB1	80mg	CR
11	Х				Χ		MLL-PTD	120mg	CRi
12				Not	yet reported			40mg	CRi
13	Х			Not	yet reported			120mg	PR
14							ASXL1, CBL	80mg	PR

Mutation Response Analysis

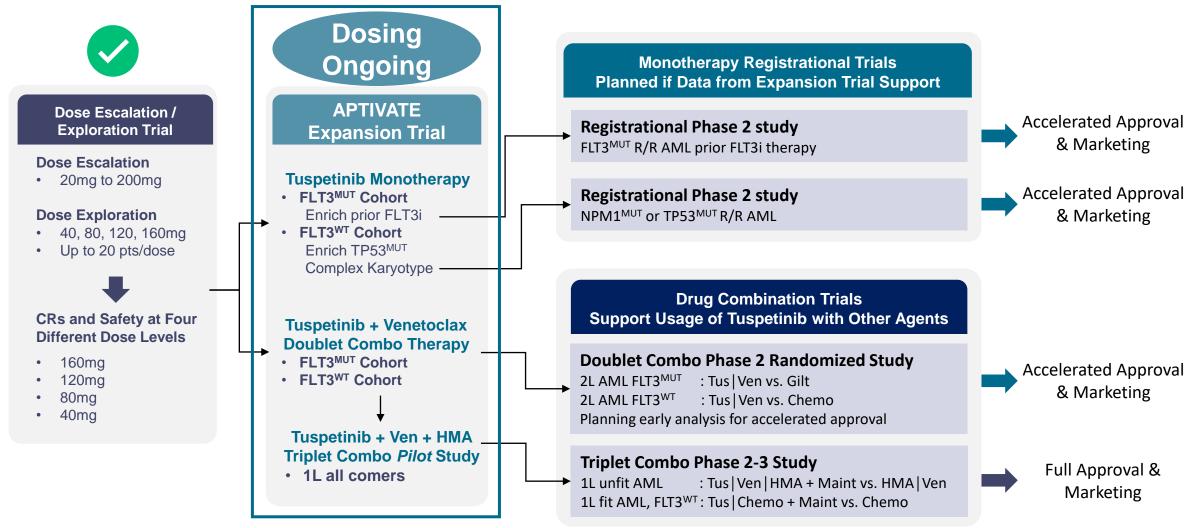
Responses across populations with highly adverse mutations: TP53, RAS, NPM1, FLT3, IDH, DNMT3A, RUNX1, MLL genes

37.5% of CRc Responders are FLT3^{WT} (3 of 8)

TP53^{MUT} / complex karyotype responders

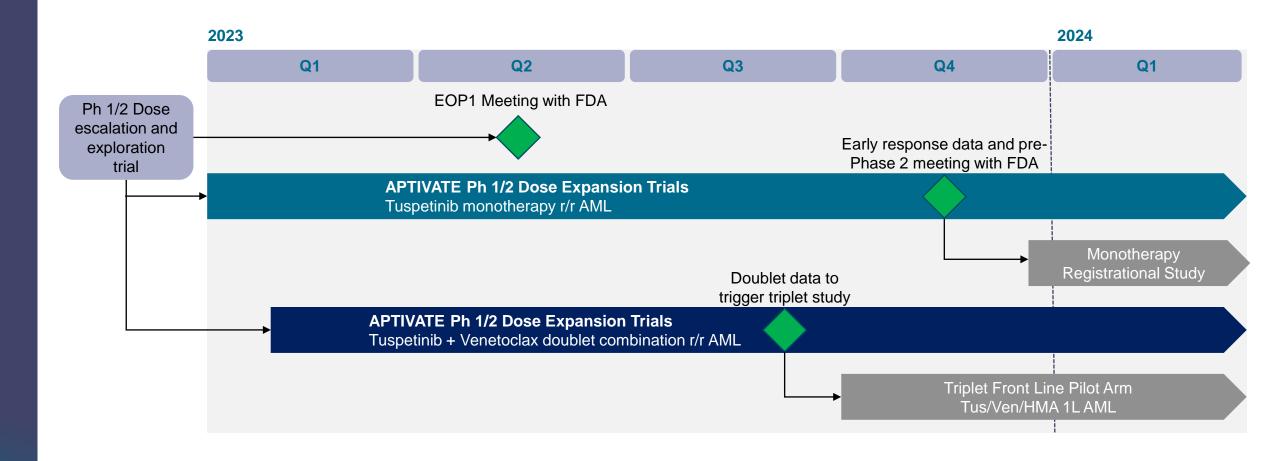
Tuspetinib delivers durable complete responses in Phase 1a trial

Best efficacy response in evaluable r/r AML 80 mg | 120 mg | 160 mg


Best Response:	RAS ^{MUT} n=7	FLT3 ^{MUT} n=21	FLT3 ^{WT} n=21	FLT3 ^{MUT} + prior FLT3i n=11	ALL n=42
CRc	2	5	3	2	8
	(28.6%)	(23.8%)	(14.3%)	(18.2%)	(19.0%)
CR/CRh	2	3	3	1	6
	(28.6%)	(14.3%)	(14.3%)	(11.1%)	(14.3%)
ORR	3	8	4	3	12
	(42.9%)	(38.1%)	(19.0%)	(27.3%)	(28.6%)

Summary of Efficacy

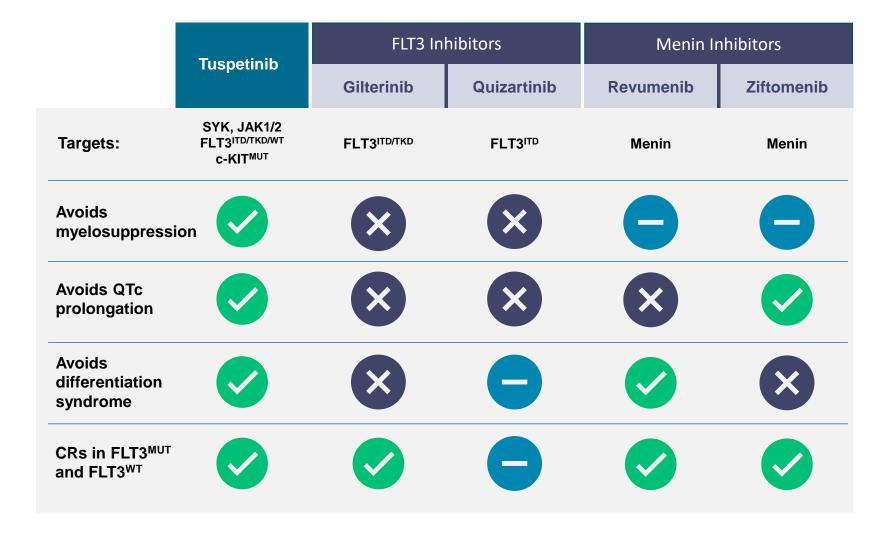
- ✓ORR: 29% at dose levels advanced to ACTIVATE expansion trial
- ✓ Responses in heavily pretreated patients (mean 2.7 prior therapies | 3L+)
- √ Responses achieved across four dose levels
- ✓ Many responders bridged to potentially life-saving transplant (HSCT)
- √ Responses across populations with highly adverse mutations including FLT3^{WT} patients
- ✓ Responses in FLT3^{MUT} patients who failed prior FLT3 inhibitors



Tuspetinib APTIVATE global expansion trial ongoing to support registrational trials for accelerated approval and drug combination trials

Tuspetinib APTIVATE trial delivering value-creating milestones in 2023

Anticipate data from monotherapy, doublet therapy and triplet therapy during 2023


Tuspetinib best-in-class TKI for AML

	Tuspetinib	Gilterinib	Quizartinib	Emavusertib	Revumenib	Ziftomenib	Lanraplenib
Targets:	SYK, JAK1/2 FLT3 ^{ITD/TKD/WT} c-KIT ^{MUT}	FLT3 ^{ITD/TKD}	FLT3 ^{ITD}	IRAK4/FLT3	Menin	Menin	SYK
Safety: broad Tx window			X	X			
Avoids QTc prolongation		×	×		×		
Avoids differentiation syndrome	1	×				×	
Single agent efficacy in AML							
Potential beyond AML		×	×				×

Tuspetinib ideal TKI for triplet combination to treat 1L AML

Tuspetinib vision of "Firsts" that increase survival at each stage of AML

Tuspetinib is positioned to be 1st in the next wave of innovation in AML

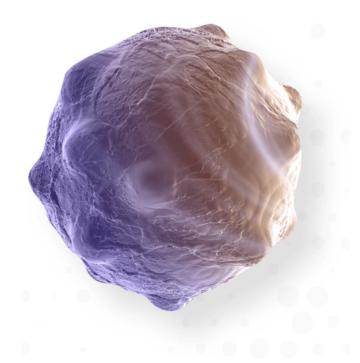
Recently approved targeted agents have run their course of the current wave of innovation in AML – their lifecycle is limited by their expected LOE expiration

The patent runway, efficacy profile and safety profile position tuspetinib potentially to become the first regulatory approved drug at each stage of the disease (1L, 2L, post-CR, and deep relapsed/refractory)

r/r AML

1st approved targeted agent in FLT3+ patients who have failed prior FLT3i

2L AML

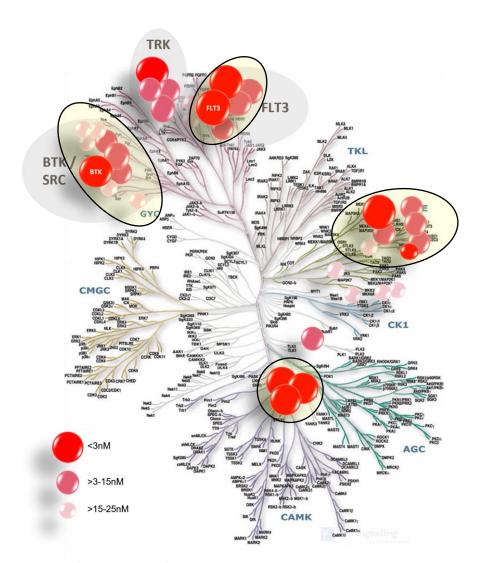

1st approved targeted agent in Tus+VEN doublet in 2L AML patients

Frontline (1L)
AML

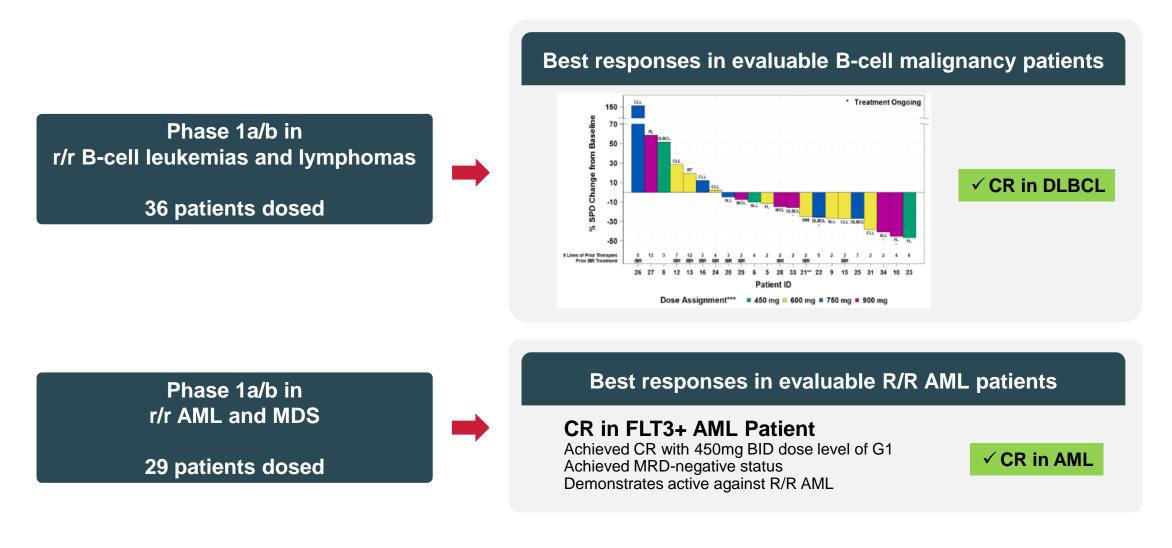
1st approved targeted agent in Tus+VEN+HMA triplet in fit & unfit patients

Post-CR Maintenance Targeted agent of choice in patients with CR following chemo or HSCT

Luxeptinib (Lux)


Oral Lymphoid & Myeloid Kinase Inhibitor

Luxeptinib: Clinical activity achieved in AML and B-cell cancer patients


Potent suppression of multiple kinases driving AML and B-cell cancers

- Inhibits BTK, FLT3, CSF1R, PDGFRα, TRK, AURK, and others
- Well-tolerated with dosing at 900mg BID with G1 original formulation
- Antitumor activity in diverse B-cell cancers
- Delivered CR (MRD-) in r/r AML patient
- Exploring G3 new formulation with improved absorption and pharmacokinetics

Luxeptinib: demonstrated clinical activity but needs improved PK

G1 original formulation active but poorly absorbed and requires administration of high doses

G3 improved formulation of luxeptinib

Luxeptinib 3rd Generation (G3) Formulation

Novel self emulsifying formulation

Designed for more rapid absorption (early Tmax), more efficient absorption (use lower doses), longer retention (longer t1/2), greater accumulation (higher steady state levels)

Administered as a single dose to define its PK profile in cancer patients

PK modeling predicts approx. an 18-fold improvement in bioavailability

Modeling predicts steady state with 50mg G3 Q12h is comparable to 900mg G1 Q12h

Ongoing continuous dosing – 3x3 dose escalation study with AML patients

Treatment of R/R AML patients with 50mg G3 Q12h is ongoing

Anticipate preliminary readout of PK properties with continuous dosing 1H 2023

Aptose Biosciences (APTO) Key Financial Highlights Q4/2022

Q4 Financial Highlights

Cash balance on Dec. 31, 2022, was \$47M

Cash burn during Q4 was \$8.4M

Cash runway into Q1 of 2024

The net loss during Q4 was \$10M

The net loss FY 2022 was \$41.8M

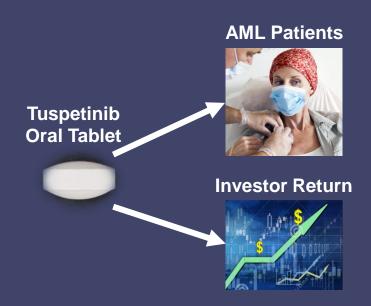
Net loss per share Q4 (\$0.11) and FY 2022 (\$0.45)

Capitalization

Market capitalization is approximately \$60 million

Recent market cap. high was \$294M on 6/2021

Tuspetinib was acquired for \$12.5M


Common stock O/S March 23, 2023, was 93,005,278

No debt, warrants, or preferred equity

Commercial est. peak sales in excess of \$1B annually

FIRM	ANALYST	
Bios Research	Aaron Fletcher, Ph.D.	
Canaccord Genuity	John Newman, Ph.D.	
Cantor Fitzgerald	Li Watsek	
H.C. Wainwright	Joseph Pantginis, Ph.D.	
JonesTrading	Soumit Roy, Ph.D.	
Oppenheimer & Co.	Matthew Biegler	
Piper Sandler & Co.	Edward Tenthoff	
RBC Capital Markets	Gregory Renza, M.D.	

Aptose is a precision oncology company developing oral targeted agents to treat hematologic malignancies

Tuspetinib (Tus) myeloid kinase inhibitor: safe and effective, once daily, oral agent to treat AML

- CRs across 4 dose levels with no DLT
- Favorable safety and non-myelosuppressive
- Broadly active across diverse AML populations
- Accelerated approval paths as monoRx and doublet
- Ideal for 1L triplet therapy and maintenance therapy
- Orphan Drug and Fast Track Status
- \$1B+ market potential

Luxeptinib (Lux) lymphoid & myeloid kinase inhibitor

- Clinically active in AML and B-cell cancers
- Exploring new formulation with improved absorption

Value-driving near-term clinical milestones during 2023

Oppenheimer Expert Call: AML Current Treatments and Future Directions

Held January 27, 2023 Quotes Regarding Tuspetinib from the KOL: *Dr. Harry Erba MD, PhD*Professor of Medicine, Hematologic Malignancies and Cellular Therapy, Duke Cancer Institute

"Let's remember, phase 1 studies are for toxicity assessments and finding the recommended phase 2 dose. But of course, we want to see responses, and we see responses, and some of them are surprising! In patients who don't have mutated FLT3."

"...I'll tell you what was most interesting to me when I look at the duration of responses and the way the study was done. **There are responses,** clearly responses. But here's the thing. **The drug did not have to be stopped in order to see a CR or a CRh.** Don't underestimate that. That's really important because it limits our combination partners because of myelosuppression with the FLT3 inhibitors we have."

"This drug may be better suited for the combinations that we hope to develop than anything we have right now."

"...when I look at the data for Tus, I'm more excited about the lack of myelosuppression"

"...at the doses that they can use to get a response, it's not leading to like an 85, 90% inhibition of FLT3 activity. And so I think that might be why they're getting away with less myelosuppression"

"A drug like Tus will have a position mostly because it has a better toxicity profile than the drugs that we're using now in terms of myelosuppression"

"If this drug continues to be safe and effective without the myelosuppression, it could be a game changer" Dr. Naval Daver¹

