

(Moore's Law)

1x

1000x

Scalar

Hybrid Computing Architectures

Hybrid Computing Architectures

Process

Packaging

Caches

Memory

Interconnect

Hybrid Compute Cluster in a Package

2021

Performance

AMX

Efficient Core Intel Thread Director

Xe SS

X^e - core

Sapphire Rapids X^e HPC & Ponte Vecchio

Alder Lake

e X^e HPG

Mount Evans

Efficient x86 Core Stephen Robinson

Microarchitecture Goals

Highly Scalable Architecture To Address the Throughput Efficiency Needs For the Next Decade of Compute

Intel's Most Efficient Performant CPU

Dense & Highly Scalable

Vector and Al Instruction Support

Wide Dynamic Range

Intel's New Efficient x86 Core Microarchitecture

Designed for throughput, enabling scalable multi-threaded performance for modern multi-tasking

Optimized for power and density efficient throughput with:

Deep Front-End

with on-demand length decode

Wide Back-End

with many execution ports

Optimized Design

for latest transistor technologies

Dual Load + Dual Store

Up to 4MB L2

shared among four cores with 64 Bytes/cycle bandwidth in 17 cycles of latency

Deep buffering

supporting 64 outstanding misses

Advanced Prefetchers

at all cache levels to detect a wide variety of streams

Intel® Resource Director Technology

enables software to control fairness among the cores and between different software threads.

UMP STO STO STO STO

Up to AMB L2 Cache

SDB

AGU AGU AGU AGU

TLB

32KB Data Cache

Shift

LLB

Modern Instruction Set

Security

Support for Advanced Vector Instructions with Al extensions

Intel® Control-flow **Enforcement Technology** designed to improve defense in depth

Wide Vector

Instruction Set Architecture

Intel® VT-rp

(Virtualization Technology redirect protection) Supported Floating point multiply-accumulate (FMA) instructions for 2x throughput

Advanced speculative execution validation methodology

Key instruction additions to enable integer Al throughput (VNNI)

Efficiency in Both Power and Performance per Transistor

Intense focus on feature selection and design implementation costs

to maximize area efficiency, which in turns enables core count scaling

Low switching energy per instruction

to maximize power constrained throughput, key for today's throughput-driven workloads Reduced operating voltage required for all frequencies

saving power while extending the performance range

$$P = C \times F \times V^2$$

Latency Performance

>40% Performance at ISO Power

<40% Power at ISO performance

SPECrate2017 int base estimates using an open source compiler, iso-binary. For workloads and configurations visit www.intel.com/ArchDay21claims. Results may vary.

Throughput Performance

-80% Power at ISO performance

SPECrate2017_int_base estimates using an open source compiler, iso-binary For workloads and configurations visit www.intel.com/ArchDay21claims. Results may vary.

AMX

Intel
Thread
Director

Xe SS

Xe - core

Sapphire Rapids

Xº HPC & Ponte Vecchio

Alder Lake

X^e HPG

Mount Evans

Performance x86 Core

Adi Yoaz

Performance x86 Core

Architecture Goals

A Step Function in CPU Architecture Performance For the Next Decade of Compute

All in a tailored scalable architecture to serve the full range of Laptops to Desktops to Data Centers

Deliver a step function in general purpose CPU performance

Advance the Arch/uArch with new features for evolving trends of workload patterns

Innovate with next disruption in **AI performance acceleration**

Out of Order Engine

Track µop dependencies and dispatch ready µops to execution units

Wider

 $5 \rightarrow 6$ wide allocation

10 → 12 execution ports

Deeper

512-entry Reorder-Buffer and larger Scheduler sizes

Smarter

More instructions "executed" at rename / allocation stage

Integer Execution Units

5th Integer execution port / **ALU** added

1-cycle LEA on all 5 ports

Used also for arithmetic calculations

Sely.

LEM

604

as

Store

Data

bay,

Allocate | Rename | Move Elimination | Zero Iden

Port

ULA

MUI

06

LEA

DIV

Port

LEA

1119

NU

05

Port

TEA

Shift

01

Port

00

ALU

Port

LEA

Shift

IMS

ALU

ULA

MulHi

FMA FMASIZ

L1 Cache & Memory Subsystem

Wider

2 → 3 load ports: 3×256bit loads 2×512bit loads

Deeper

Deeper Load Buffer and Store Buffer expose more memory parallelism

Smarter

- Reduced effective Load Latency
- Faster Memory Disambiguation resolution

Large Data

- DTLB 64 → 96
- L1 D\$: 12 → 16 fill buffers
- L1D\$ enhanced prefetcher
- $2 \rightarrow 4$ page walkers

L2 Cache & Memory Subsystem

port

NOA

48KB Data Cache

63

Port

AGU

80

Port

Port

09

Store

Data

port

LEA

97

NGN

ATE

usa

Load

1.25MB/2MB ML Cache

404

STA

DEOL

Bigger

L2\$: 1.25MB (client) or 2MB (data center)

Faster

Max demand misses 32→48

Smarter

- L2\$ pattern-based multi-path prefetcher
- Feedback-based prefetch throttling
- Full-line-write predictive bandwidth optimization – reduces DRAM reads

Architecture Day 2021

General-Purpose Performance Vs. 11th Gen Intel® Core™

For workloads and configurations visit www.intel.com/ArchDay21claims. Results may vary.

Intel® Advanced Matrix Extensions (Intel® AMX)

Tiled Matrix Multiplication Accelerator - Data Center

AMX **2048 int8**

8x

operations/cycle/core

Intel® Advanced Matrix Extensions (Intel® AMX)

Tiled Matrix Multiplication Accelerator - Data Center

AMX architecture has two components:

Tiles

- A new expandable 2D register file 8 new registers, 1Kb each: TO-T7
- Register file supports basic data operators load/store, clear, set to constant, etc.
- TILES declares the state and is OS-managed by XSAVE architecture

TMUL

- Set of matrix multiplication instructions, the first operators on TILEs
- A MAC computation grid calculates 'tiles' of data
- TMUL performs Matrix ADD-Multiplication (C=+A*C) using three Tile registers (T2=+T1*T0)
- TMUL requires TILE to be present

Express more work per instruction and per μ op – save power for fetch/decode/OOO

Intel® Advanced Matrix Extensions (Intel® AMX)

Architecture

New

Performance

x86 Core

A Step Function in CPU Architecture Performance For the Next Decade of Compute

A significant IPC boost at high power efficiency

Wider

Deeper

Smarter

Better supports large data set and large code footprint applications

Enhanced power management improves frequency and power

Machine Learning Technology: Intel® AMX – Tile Multiplication

All in a tailored scalable architecture to serve the full range of Laptops to Desktops to Data Centers

Architecture Day 2021

New Architectural Foundations

Intel **Thread Director**

Xe SS

Xe - core

Sapphire Rapids

Xe HPC & Ponte Vecchio

x86 yet

Alder Lake

X^e HPG

Mount Evans

Scalar Architecture Roadmap

2019

Sunny Willow Golden Coves Cove Cove Cove Grace Tre Monts Mont Mont

Today

2021

Graph is for conceptual illustration purposes only.

Intel Thread Director Rajshree Chabukswar

Performance Hybrid

Scheduling Goals

Software Transparent

Real -Time Adaptive

Scalable from Mobile to Desktop

Intel Thread Director

Intelligence built directly into the core

Monitors the runtime instruction mix

of each thread and as well as the state of each core – with nanosecond precision

Provides runtime feedback to the OS

to make the optimal scheduling decision for any workload or workflow

Dynamically adapts guidance

based on the thermal design point, operating conditions, and power settings – without any user input

Intel Thread Director

Scheduling Examples

Intel Thread Director

Scheduling Examples

Priority tasks scheduled on P-cores

Intel Thread Director

Scheduling Examples

Priority tasks scheduled on P-cores

2 Background tasks scheduled on E-cores

Intel Thread Director

Scheduling Examples

Background tasks scheduled on E-cores

3 New Al thread ready

Intel Thread Director

Scheduling Examples

Priority tasks scheduled on P-cores

2 Background tasks scheduled on E-cores

3 New Al thread ready

Intel Thread Director

Scheduling Examples

Priority tasks scheduled on P-cores

2 Background tasks scheduled on E-cores

3 Al thread prioritized on P-core

Intel Thread Director

Scheduling Examples

Priority tasks scheduled on P-cores

2 Background tasks scheduled on E-cores

3 Al thread prioritized on P-core

4 Spin loop wait moved from P to E-core

Intel Thread Director

Scheduling Examples

Priority tasks scheduled on P-cores

2 Background tasks scheduled on E-cores

3 Al thread prioritized on P-core

4 Spin loop wait moved from P to E-core

Intel Thread Director

Scheduling Examples

Priority tasks scheduled on P-cores

2 Background tasks scheduled on E-cores

3 Al thread prioritized on P-core

Spin loop wait moved from P to E-core

Architecture Day 2021

New Architectural Foundations

Core Biggest Shift in

x86 yet

Xe - core

Xe HPC & Ponte Vecchio

Alder Lake

X^e HPG

Mount Evans

Alder Lake

Reinventing Multi Core Architecture

Single, Scalable SoC Architecture

All Client Segments – 9W to 125W – built on Intel 7 process

All-New Core Design

Performance Hybrid with Intel Thread Director

Industry-Leading Memory & I/O

DDR5, PCIe Gen5, Thunderbolt™ 4, Wi-Fi 6E

Scalable Client Architecture

Desktop

LGA 1700 Socket

Mobile

BGA Type3 50 x 25 x 1.3 mm

BGA Type4 HDI 28.5 x 19 x 1.1 mm

Visit <u>www.intel.com/ArchDay21claims</u> for details

Alder Lake

Building Blocks

Desktop Mobile Ultra Mobile

Building Blocks

Desktop Mobile Ultra Mobile

Building Blocks

E-Cores

Desktop Mobile Ultra Mobile

Building Blocks

Memory

P-Core

E-Cores

Desktop Mobile Ultra Mobile Display GNA 3.0 GNA 3.0 твт твт Display IPU TBT TBT GNA 3.0 E E твт твт Display L LC LLC LLC LLC L C **Building Blocks** SOC GNA 3.0 IPU Display PCle TBT

E-Cores

P-Core

Alder Lake Core/Cache

Up To

16 Cores

8 Performance 8 Efficient Up To

24 Threads

2T per P-core 1T per E-core Up to

30MB

Non-inclusive LL Cache

Alder Lake Memory

Leading the industry transition to DDR5

Support for all four major memory technologies

Dynamic voltage-frequency scaling

Enhanced overclocking support

Alder Lake PCIe

Leading the industry transition to PCle Gen5

Up to 2X bandwidth vs. Gen4 Up to 64GB/s with x16 lanes

Visit www.intel.com/ArchDay21claims for details

New

Visit www.intel.com/ArchDav21claims for details

Beginning Fall 2021

Alder Lake

Reinventing Multi Core Architecture

Single, Scalable SoC Architecture

All Client Segments – 9W to 125W – built on Intel 7 process

All-New Core Design

Performance Hybrid with Intel Thread Director

Industry-Leading Memory & I/O

DDR5, PCIe Gen5, Thunderbolt™ 4, Wi-Fi 6E

Architecture Day 2021

New Architectural Foundations

Performance Core Biggest Shift in

x86 yet

Xe - core

Sapphire Rapids

Xe HPC & Ponte Vecchio

Mount Evans

XeHPG architecture

Leadership Integrated Graphics

For workloads and configurations visit <u>www.intel.com/ArchDay21claims</u>. Results may vary.

For workloads and configurations visit $\underline{www.intel.com/ArchDay21claims}. \ Results \ may \ vary.$

Vivid PC Graphics Market

^{1.} Source: https://www.pcgamesn.com/pc-gaming-study

^{2.} Source: https://blog.streamlabs.com/streamlabs-stream-hatchet-q1-2021-live-streaming-industry-report-eaba2143f492

^{3.} Source: Part 1 : Game Developer Population Forecast 2020, April 2020, SlashData

intel ARC

Powered by

Alchemist soc

Xe HPG Sneak Peek

Lisa Pearce

Software First

XeSS Hits the Sweet Spot

Graph is for conceptual illustration purposes only. Subject to revision with further testing.

XeSS SDK

Available this month

Xe HPG Sneak Peek

David Blythe

Scalability

Graphics Efficiency

High Performance
Gaming Optimized

Compute Building Block of X^e HPG-based GPUs

Render Slice

4 Xe-cores with XMX

intel.

Scaling the Graphics Engine

EHPG Leadership IP Performance/Watt

Logic Design

Circuit Design

Process Technology

Software

For workloads and configurations visit www.intel.com/ArchDay21claims. Results may vary.

"In the world of graphics, there is an insatiable demand for better performance and more realism. TSMC is excited that **Intel has chosen our N6 technology for their Alchemist family of discrete graphics solutions".**

"There are many ingredients to a successful graphics product including the semiconductor technology. With N6, TSMC provides an optimal balance of performance, density and power efficiency that are ideal for modern GPUs. We are pleased with the **collaboration with Intel on the Alchemist family of discrete GPUs**".

Dr. Kevin Zhang,

Senior Vice President of Business Development at TSMC

Multi-Year Roadmap

Performance

Alchemist X® HPG

Battlemage Xe2 HPG

Celestial Xe3 HPG

Druid

X^e Next Architecture

Architecture Day 2021

New Architectural Foundations

Performance Core Biggest Shift in x86 yet

Sapphire Rapids

Xe HPC & Ponte Vecchio

Mount Evans

Architecture Day 2021

Part 1 Recap

Performance Core Biggest Shift in

x86 yet

Alder

Sapphire Rapids

Xe HPC & Ponte Vecchio

Mount Evans

Sapphire Rapids Sailesh Kottapalli

Introducing

Sapphire Rapids

Next-Gen Intel Xeon Scalable Processor

New Standard for Data Center Architecture

Designed for Microservices & Al Workloads

Pioneering Advanced Memory & IO Transitions

Node Performance

Data Center Performance

Node Performance

Scalar Performance

New Performance Core Microarchitecture Data Parallel Performance

Multiple Integrated Acceleration Engines

Increased Core Counts Cache & Memory Sub-System Arch

Larger Private & Shared Caches

DDR 5

Next Gen Optane Support

PCle 5.0

Intra/Inter Socket Scaling

Modular SoC/w Modular Die Fabric

Wider & Faster UPI

Embedded Silicon Bridge (EMIB)

Next Gen Quality of Service Capabilities

> Broad WL/Usage Support and Optimizations

Low Jitter Architecture

Consistent Caching & Mem Latency

Next Gen Optane Support Integrated WL Accelerators

IO Virtualization

Fast VM Migration

Better Telemetry

Inter-Processor Interrupt Virt.

CXL 1.1

Improved Security & RAS

Consolidation & Orchestration

Performance Consistency Elasticity &
Efficient Data
Center
Utilization

Infrastructure & Framework
Overhead

Data Center Performance

Ice LakeSingle Monolithic Die

Multi-Tile Design for Increased Scalability

Delivers a scalable, balanced architecture leveraging existing software paradigms for monolithic CPUs via a modular architecture

Sapphire Rapids

Multiple Tiles, Single CPU

Every thread has full access to all resources on all tiles

Cache, Memory, IO...

Provides consistent low latency & high cross-section BW across the entire SoC

Sapphire Rapids soc

Sapphire Rapids

Key Building Blocks

Performance Core Built for Data Center

Major microarchitecture and IPC improvement

Improved support for large code/data footprint

Consistent performance for multi-tenant usages

Autonomous/Fast PM for high freq @ low jitter

Performance Core

Architecture Improvements for DC Workloads & Usages Αl

Intel® Advanced Matrix Extensions - AMX

Tiled matrix operations for inference & training acceleration

Attached Device Accelerator interfacing Architecture - AiA

Efficient dispatch, signaling & synchronization from user level

FP16

Half-Precision

Support for higher throughput lower precision

Cache Management

CLDEMOTE

Proactive placement of cache contents

Sapphire Rapids

Acceleration Engines

Increasing effectiveness of cores,

by enabling offload of common mode tasks via seamlessly integrated acceleration engines

Native Dispatch, Signaling & Synchronization from User Space **Accelerator interfacing Architecture**

Coherent, Shared Memory Space

Between Cores & Acceleration Engines

Concurrently shareable

Processes, containers and VMs

Intel® Data Streaming

Acceleration Engine

Optimizing streaming data movement and transformation operations

Results have been estimated or simulated and based on tests with Ice Lake with Intel QAT For workloads and configurations visit www.intel.com/ArchDay21claims. Results may vary.

Intel® Quick Assist Technology

Acceleration Engine

Accelerating Cryptography and Data De/Compression

up to 160Gb/s Compression + 160Gb/s De-compression

Fused Operations

Results have been estimated or simulated. Sapphire Rapids estimation based on architecture models and baseline testing with Ice Lake and Intel QAT. For workloads and configurations visit www.intel.com/ArchDay21claims. Results may vary.

98%
additional
workload capacity
after QAT offload

Sapphire Rapids soc

Sapphire Rapids I/O Advancements

Introducing Compute eXpress Link (CXL) 1.1

Accelerator and memory expansion in datacenter

Expanded device performance via PCIe 5.0 & connectivity

Improved DDIO & QoS capabilities

Improved Multi-Socket scaling via Intel® Ultra Path Interconnect (UPI) 2.0

Up to 4 x24 UPI links operating @ 16 GT/s

New 8S-4UPI performance optimized topology

Sapphire Rapids Memory and Last Level Cache

Increased Shared Last Level Cache (LLC)

Up to >100 MB LLC shared across ALL cores

Increased bandwidth, security & reliability via DDR 5 Memory

4 memory controllers supporting 8 channels

Intel® Optane™ Persistent Memory 300 Series

Sapphire Rapids

High Bandwidth Memory

Significantly Higher Memory Bandwidth

vs. baseline Xeon-SP with 8 channels of DDR 5

Increased capacity and Bandwidth

some usages can eliminate need for DDR entirely

2 Modes

HBM Flat Mode

Flat Mem Regions w/HBM & DRAM

HBM Caching Mode

Sapphire Rapids - Architected for Al

Al has become ubiquitous across usages – Al performance required in all tiers of computing

Enable efficient usage of AI across all services deployed on elastic general-purpose tier by delivering many times more AI performance and lower CPU utilization

For Deep Learning

int8 with int32 accumulation

Datatypes

Bfloat16 with IEEE SP accumulation

Acceleration at the ISA Level

Goal

- Full Intel Arch. programmability
- Low Latency

Available and integrated with industry-relevant frameworks & libraries

Results have been simulated. For workloads and configurations visit www.intel.com/ArchDay21claims. Results may vary.

Sapphire Rapids - Built for elastic computing models - microservices

>80% of new cloud-native and SaaS applications are expected to be built as microservices

Goal

Enable higher throughput while meeting latency requirements and reducing infrastructure overhead for execution, monitoring and orchestration thousands of microservices

Improved
Performance and
Quality of Service

Runtime Languages - lower latency for Runtime Languages
AiA ISA's - efficient worker threads, signaling and synch.

Reduced
Infrastructure

Runtime Languages - lower latency for Runtime Languages
AiA ISA's - efficient worker threads, signaling and synch.

Overhead Advanced Telemetry - easier analysis & optimization

Better Distributed Improved latency of Remote procedure calls and service-mesh

Communication QAT, DSA etc.- optimized networking and data movement

 $Results \ have been \ simulated. For \ workloads \ and \ configurations \ visit \ \underline{www.intel.com/ArchDay21claims}. \ Results \ may \ vary.$

roughput per Core under Latency SLA of p99 <30m

New Standard in Data Center Architecture

Multi Tile SoC for Scalability

Physically Tiled, Logically Monolithic General Purpose & Dedicated Acceleration Engines

Sapphire Rapids

Biggest Leap in Data Center Capabilities in over a Decade

Designed for Microservices and Al Workloads

Performance Core Architecture Workload Specialized

Acceleration

Pioneering Advanced Memory & IO Transitions

DDR 5 & HBM

PCle 5.0

Enhanced Virtualization Capabilities

Architecture Day 2021

New Architectural Foundations

Alchemist SoC

Xe HPC & Ponte Vecchio

Mount Evans

Infrastructure Processing Unit Guido Appenzeller

Server Architecture in a classic Data Center

Software and Infrastructure are all controlled by One Entity

Classic Server Architecture

Cloud Server Architecture

Major Advantages of IPUs

Separation of Infrastructure & Tenant

Guest can fully control the CPU with their SW, while CSP maintains control of the infrastructure and Root of Trust

Advantage 🔃 - Separation of Infrastructure and Tenant

Maximum Control and Isolation for the Tenant

Advantage 2 - Infrastructure Offload

In some cases, the majority of CPU cycles are spent on overhead

Feed 1

Feed 2

Ads 1

Ads 2

Cache 1

Source: From Accelerometer: Understanding Acceleration Opportunities for Data Center Overheads at Hyperscale. Akshitha Srirama, Abhishek Dhanotia. Facebook.

Web

Cache 2

Advantage 2 - Infrastructure Offload

Dedicated Accelerators Free up CPU Capacity

Management Software Network Storage **Software Based** Customer's Accelerators for Software **Efficient Processing** Standard OS Hardware 2110

Advantage 3 - Diskless Server Architecture

Scale with Virtual Storage via Network

Broad Infrastructure Acceleration Portfolio

Note: Future Intel IPUs may integrate both ASIC and FPGA

Introducing

Oak Springs Canyon

High perf networking and storage acceleration for Cloud Service Providers

OVS, NVMe over Fabric, and RoCE solutions

Programmable through Intel OFS, DPDK, and SPDK

Customizable solutions with FPGA

Oak Springs Canyon

Built with Intel® Agilex FPGA and Xeon-D SoC

High speed Ethernet support - 2x100G

PCle Gen 4 x16

Hardware crypto block enables security at line rate

Introducing

Arrow Creek

Acceleration Development Platform (ADP) for High Performance 100G networking acceleration

Customizable packet processing including bridging and networking services

Programmable through Intel OFS and DPDK

Accelerated infrastructure workloads Juniper Contrail , OVS, SRv6, vFW

Secure Remote Update of FPGA and Firmware over PCIe

On-board root of trust

Arrow Creek

Built with Intel® Agilex FPGA and Ethernet E810 Controller

Introducing

Mount Evans

Hyperscale Ready Co-designed with a top cloud provider

Integrated learnings from multiple gen. of FPGA sNICs

High performance under real world load

Security and isolation from the ground up

Technology Innovation Best-in-Class Programmable Packet Processing Engine

NVMe storage interface scaled up from Intel Optane Tech

Next Generation Reliable Transport

Advanced crypto and compression accel.

Software

SW/HW/Accel co-design

P4 Studio based on Barefoot

Leverage and extend DPDK and SPDK

Network Subsystem

Compute Complex

Mount Evans

Architectural Breakdown

Mount Evans Compute Complex

Up to 16 Arm Neoverse® N1 Cores

Dedicated compute and cache with up to 3 memory channels

Lookaside crypto and compression

Dedicated management processor

Architecture Day 2021

New Architectural Foundations

Performance Core

Biggest Shift in x86 yet

Xe HPC & Ponte Vecchio

Capabilities

in a decade

Xe HPC architecture

For workloads and configurations visit <u>www.intel.com/ArchDay21claims</u> . Results may vary.

For workloads and configurations visit $\underline{\text{www.intel.com/ArchDay21claims}} \text{ . Results may vary.}$

Compute Building Block of Xe HPC-based GPUs

Vector
Engines
512 bit
per engine

8
Matrix
Engines
4096 bit
per engine

Load / Store
512 B/CLK

Cache L1\$/ SLM (512KB), **|\$**

Vector Engine (ops/clk)

256 FP32

256 FP64

512 FP16

Up to

4 Slices

64 Xe - cores

64 Ray Tracing Units

4 Hardware Contexts

L2 Cache

4 HBM2e controllers

1 Media Engine

8 X^e Links

P 2-Stack

For workloads and configurations visit www.intel.com/ArchDay21claims . Results may vary.

High Speed Coherent Unified Fabric (GPU to GPU)

Load/Store, Bulk Data Transfer & Sync Semantics

Up to 8 Fully Connected GPUs through Embedded Switch

8x System Compute Rates

Vector

Up to

32,768 FP64 Ops/CLK

Up to 32,768 FP32 Ops/CLK **Matrix** Up to

8x 262,144

TF32 Ops/CLK

Up to

524,288

BF16 Ops/CLK

Up to 1,048,576 INT8 Ops/CLK

New Verification Methodology New **Software** New Reliability Methodology New Signal Integrity Techniques New Interconnects New Power Delivery Technology New Packaging Technology New I/O Architecture New **Memory Architecture** New IP Architecture

New **SOC Architecture**

Key Challenges

Scale of Integration

Foveros Implementation

Verification Tools & Methods

Signal Integrity, Reliability & Power Delivery

Compute Tiles

Per Tile

8

Xe - cores

L1 Cache

4MB

Per Tile

Built on TSMC N5

Bump Pitch **36um**Foveros

Base Tile

X^e Link Tile

Per Tile

8 Xe Links

8 ports
Embedded
Switch

Built on TSMC N7

Up to 90G Serdes

For workloads and configurations visit $\underline{\text{www.intel.com/ArchDay21claims}} \text{ . Results may vary.}$

Execution Progress

A0 Silicon Current Status

>45 TFLOPS

FP32 Throughput

>5 TBps

Memory Fabric
Bandwidth

>2TBps

Connectivity Bandwidth

For workloads and configurations visit www.intel.com/ArchDay21claims . Results may vary.

Accelerated Compute Systems

Ponte Vecchio x4 Subsystem

with Xe Links

+ 2S Sapphire Rapids

Ponte Vecchio x4 Subsystem with Xe Links

Ponte Vecchio OAM

Overcoming Separate CPU and GPU Software Stacks

CPU & XPU - Optimized Stack

Open, Standards-Based Unified Software Stack

Freedom from proprietary programming models

Full performance from the hardware

Piece of mind for developers

oneAPI Industry Momentum

Industry Momentum

End Users

National Labs

ISVs & OSVs

OEMs & SIs

D¢LLTechnologies

Atos

Hewlett Packard Enterprise

Universities & Research Institutes

Indian Institutes of Technology Delhi / Kharagpur /

Indian Institute of Science Education & Research Pune

CSPs & Frameworks

Unique installs of Intel® oneAPI product since Dec'20 release

Deployed in market using Intel® oneAPI language & libraries

>80 HPC & Al Applications

Functional on Intel's X° HPC architecture using Intel® oneAPI

Toolkits v2021.3 **Available Now**

Unique installs of Intel® oneAPI product since Dec'20 release

Deployed in market using Intel® one API language & libraries

>80 HPC & Al Applications

Functional on Intel's X^e HPC architecture using Intel[®] oneAPI

Unique installs of Intel® oneAPI product since Dec'20 release

Deployed in market using Intel® oneAPI language & libraries

>80 HPC & Al Applications

Functional on Intel's X^e HPC architecture using Intel[®] oneAPI

Aurora Blade

Building Block for the ExaScale Supercomputer

oneAPI

Ponte Vecchio

The vision 2 years ago...

Leadership Performance for HPC/AI

Connectivity to drive scaleup and scale out

Unified Programming Model powered with one API

Architecture Day 2021

New Architectural Foundations

Performance Core Biggest Shift in

x86 yet

Gaming &

See you at

intel Innovation

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.lntel.com/PerformanceIndex..Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See www.lntel.com/ArchDay21claims for configuration details. No product or component can be absolutely secure.

All product plans and roadmaps are subject to change without notice. Results that are based on pre-production systems and components as well as results that have been estimated or simulated using an Intel Reference Platform (an internal example new system), internal Intel analysis or architecture simulation or modeling are provided to you for informational purposes only. Results may vary based on future changes to any systems, components, specifications, or configurations. Intel technologies may require enabled hardware, software or service activation.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not "commercial" names and not intended to function as trademarks.

Intel contributes to the development of benchmarks by participating in, sponsoring, and/or contributing technical support to various benchmarking groups, including the BenchmarkXPRT Development Community administered by Principled Technologies.

Statements in this presentation that refer to future plans and expectations are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "goals," "plans," "believes," "seeks," "estimates," "continues," "may," "will," "would," "should," "could," and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on estimates, forecasts, projections, uncertain events or assumptions, including statements relating to future products and technology and the expected availability and benefits of such products and technology, market opportunity, and anticipated trends in our businesses or the markets relevant to them, also identify forward-looking statements. Such statements are based on management's current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in these forward-looking statements. Important factors that could cause actual results to differ materially from the company's expectations are set forth in Intel's reports filed or furnished with the Securities and Exchange Commission (SEC), including Intel's most recent reports on Form 10-K and Form 10-Q, available at Intel's investor relations website at www.intc.com and the SEC's website at www.sec.gov. Intel does not undertake, and expressly disclaims any duty, to update any statement made in this presentation, whether as a result of new information, new developments or otherwise, except to the extent that disclosure may be required by law.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.